Sacado Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gtest-port.cc
Go to the documentation of this file.
1 // Copyright 2008, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
32 
33 #include <limits.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <cstdint>
38 #include <fstream>
39 #include <memory>
40 
41 #if GTEST_OS_WINDOWS
42 # include <windows.h>
43 # include <io.h>
44 # include <sys/stat.h>
45 # include <map> // Used in ThreadLocal.
46 # ifdef _MSC_VER
47 # include <crtdbg.h>
48 # endif // _MSC_VER
49 #else
50 # include <unistd.h>
51 #endif // GTEST_OS_WINDOWS
52 
53 #if GTEST_OS_MAC
54 # include <mach/mach_init.h>
55 # include <mach/task.h>
56 # include <mach/vm_map.h>
57 #endif // GTEST_OS_MAC
58 
59 #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
60  GTEST_OS_NETBSD || GTEST_OS_OPENBSD
61 # include <sys/sysctl.h>
62 # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
63 # include <sys/user.h>
64 # endif
65 #endif
66 
67 #if GTEST_OS_QNX
68 # include <devctl.h>
69 # include <fcntl.h>
70 # include <sys/procfs.h>
71 #endif // GTEST_OS_QNX
72 
73 #if GTEST_OS_AIX
74 # include <procinfo.h>
75 # include <sys/types.h>
76 #endif // GTEST_OS_AIX
77 
78 #if GTEST_OS_FUCHSIA
79 # include <zircon/process.h>
80 # include <zircon/syscalls.h>
81 #endif // GTEST_OS_FUCHSIA
82 
83 #include "gtest/gtest-spi.h"
84 #include "gtest/gtest-message.h"
87 #include "src/gtest-internal-inl.h"
88 
89 namespace testing {
90 namespace internal {
91 
92 #if defined(_MSC_VER) || defined(__BORLANDC__)
93 // MSVC and C++Builder do not provide a definition of STDERR_FILENO.
94 const int kStdOutFileno = 1;
95 const int kStdErrFileno = 2;
96 #else
97 const int kStdOutFileno = STDOUT_FILENO;
98 const int kStdErrFileno = STDERR_FILENO;
99 #endif // _MSC_VER
100 
101 #if GTEST_OS_LINUX
102 
103 namespace {
104 template <typename T>
105 T ReadProcFileField(const std::string& filename, int field) {
106  std::string dummy;
107  std::ifstream file(filename.c_str());
108  while (field-- > 0) {
109  file >> dummy;
110  }
111  T output = 0;
112  file >> output;
113  return output;
114 }
115 } // namespace
116 
117 // Returns the number of active threads, or 0 when there is an error.
118 size_t GetThreadCount() {
119  const std::string filename =
120  (Message() << "/proc/" << getpid() << "/stat").GetString();
121  return ReadProcFileField<size_t>(filename, 19);
122 }
123 
124 #elif GTEST_OS_MAC
125 
126 size_t GetThreadCount() {
127  const task_t task = mach_task_self();
128  mach_msg_type_number_t thread_count;
129  thread_act_array_t thread_list;
130  const kern_return_t status = task_threads(task, &thread_list, &thread_count);
131  if (status == KERN_SUCCESS) {
132  // task_threads allocates resources in thread_list and we need to free them
133  // to avoid leaks.
134  vm_deallocate(task,
135  reinterpret_cast<vm_address_t>(thread_list),
136  sizeof(thread_t) * thread_count);
137  return static_cast<size_t>(thread_count);
138  } else {
139  return 0;
140  }
141 }
142 
143 #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
144  GTEST_OS_NETBSD
145 
146 #if GTEST_OS_NETBSD
147 #undef KERN_PROC
148 #define KERN_PROC KERN_PROC2
149 #define kinfo_proc kinfo_proc2
150 #endif
151 
152 #if GTEST_OS_DRAGONFLY
153 #define KP_NLWP(kp) (kp.kp_nthreads)
154 #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
155 #define KP_NLWP(kp) (kp.ki_numthreads)
156 #elif GTEST_OS_NETBSD
157 #define KP_NLWP(kp) (kp.p_nlwps)
158 #endif
159 
160 // Returns the number of threads running in the process, or 0 to indicate that
161 // we cannot detect it.
162 size_t GetThreadCount() {
163  int mib[] = {
164  CTL_KERN,
165  KERN_PROC,
166  KERN_PROC_PID,
167  getpid(),
168 #if GTEST_OS_NETBSD
169  sizeof(struct kinfo_proc),
170  1,
171 #endif
172  };
173  u_int miblen = sizeof(mib) / sizeof(mib[0]);
174  struct kinfo_proc info;
175  size_t size = sizeof(info);
176  if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
177  return 0;
178  }
179  return static_cast<size_t>(KP_NLWP(info));
180 }
181 #elif GTEST_OS_OPENBSD
182 
183 // Returns the number of threads running in the process, or 0 to indicate that
184 // we cannot detect it.
185 size_t GetThreadCount() {
186  int mib[] = {
187  CTL_KERN,
188  KERN_PROC,
189  KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
190  getpid(),
191  sizeof(struct kinfo_proc),
192  0,
193  };
194  u_int miblen = sizeof(mib) / sizeof(mib[0]);
195 
196  // get number of structs
197  size_t size;
198  if (sysctl(mib, miblen, NULL, &size, NULL, 0)) {
199  return 0;
200  }
201 
202  mib[5] = static_cast<int>(size / static_cast<size_t>(mib[4]));
203 
204  // populate array of structs
205  struct kinfo_proc info[mib[5]];
206  if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
207  return 0;
208  }
209 
210  // exclude empty members
211  size_t nthreads = 0;
212  for (size_t i = 0; i < size / static_cast<size_t>(mib[4]); i++) {
213  if (info[i].p_tid != -1)
214  nthreads++;
215  }
216  return nthreads;
217 }
218 
219 #elif GTEST_OS_QNX
220 
221 // Returns the number of threads running in the process, or 0 to indicate that
222 // we cannot detect it.
223 size_t GetThreadCount() {
224  const int fd = open("/proc/self/as", O_RDONLY);
225  if (fd < 0) {
226  return 0;
227  }
228  procfs_info process_info;
229  const int status =
230  devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr);
231  close(fd);
232  if (status == EOK) {
233  return static_cast<size_t>(process_info.num_threads);
234  } else {
235  return 0;
236  }
237 }
238 
239 #elif GTEST_OS_AIX
240 
241 size_t GetThreadCount() {
242  struct procentry64 entry;
243  pid_t pid = getpid();
244  int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1);
245  if (status == 1) {
246  return entry.pi_thcount;
247  } else {
248  return 0;
249  }
250 }
251 
252 #elif GTEST_OS_FUCHSIA
253 
254 size_t GetThreadCount() {
255  int dummy_buffer;
256  size_t avail;
257  zx_status_t status = zx_object_get_info(
258  zx_process_self(),
259  ZX_INFO_PROCESS_THREADS,
260  &dummy_buffer,
261  0,
262  nullptr,
263  &avail);
264  if (status == ZX_OK) {
265  return avail;
266  } else {
267  return 0;
268  }
269 }
270 
271 #else
272 
273 size_t GetThreadCount() {
274  // There's no portable way to detect the number of threads, so we just
275  // return 0 to indicate that we cannot detect it.
276  return 0;
277 }
278 
279 #endif // GTEST_OS_LINUX
280 
281 #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
282 
283 void SleepMilliseconds(int n) {
284  ::Sleep(static_cast<DWORD>(n));
285 }
286 
287 AutoHandle::AutoHandle()
288  : handle_(INVALID_HANDLE_VALUE) {}
289 
290 AutoHandle::AutoHandle(Handle handle)
291  : handle_(handle) {}
292 
293 AutoHandle::~AutoHandle() {
294  Reset();
295 }
296 
297 AutoHandle::Handle AutoHandle::Get() const {
298  return handle_;
299 }
300 
301 void AutoHandle::Reset() {
302  Reset(INVALID_HANDLE_VALUE);
303 }
304 
305 void AutoHandle::Reset(HANDLE handle) {
306  // Resetting with the same handle we already own is invalid.
307  if (handle_ != handle) {
308  if (IsCloseable()) {
309  ::CloseHandle(handle_);
310  }
311  handle_ = handle;
312  } else {
313  GTEST_CHECK_(!IsCloseable())
314  << "Resetting a valid handle to itself is likely a programmer error "
315  "and thus not allowed.";
316  }
317 }
318 
319 bool AutoHandle::IsCloseable() const {
320  // Different Windows APIs may use either of these values to represent an
321  // invalid handle.
322  return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE;
323 }
324 
325 Notification::Notification()
326  : event_(::CreateEvent(nullptr, // Default security attributes.
327  TRUE, // Do not reset automatically.
328  FALSE, // Initially unset.
329  nullptr)) { // Anonymous event.
330  GTEST_CHECK_(event_.Get() != nullptr);
331 }
332 
333 void Notification::Notify() {
334  GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
335 }
336 
337 void Notification::WaitForNotification() {
338  GTEST_CHECK_(
339  ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
340 }
341 
342 Mutex::Mutex()
343  : owner_thread_id_(0),
344  type_(kDynamic),
345  critical_section_init_phase_(0),
346  critical_section_(new CRITICAL_SECTION) {
347  ::InitializeCriticalSection(critical_section_);
348 }
349 
350 Mutex::~Mutex() {
351  // Static mutexes are leaked intentionally. It is not thread-safe to try
352  // to clean them up.
353  if (type_ == kDynamic) {
354  ::DeleteCriticalSection(critical_section_);
355  delete critical_section_;
356  critical_section_ = nullptr;
357  }
358 }
359 
360 void Mutex::Lock() {
361  ThreadSafeLazyInit();
362  ::EnterCriticalSection(critical_section_);
363  owner_thread_id_ = ::GetCurrentThreadId();
364 }
365 
366 void Mutex::Unlock() {
367  ThreadSafeLazyInit();
368  // We don't protect writing to owner_thread_id_ here, as it's the
369  // caller's responsibility to ensure that the current thread holds the
370  // mutex when this is called.
371  owner_thread_id_ = 0;
372  ::LeaveCriticalSection(critical_section_);
373 }
374 
375 // Does nothing if the current thread holds the mutex. Otherwise, crashes
376 // with high probability.
377 void Mutex::AssertHeld() {
378  ThreadSafeLazyInit();
379  GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
380  << "The current thread is not holding the mutex @" << this;
381 }
382 
383 namespace {
384 
385 #ifdef _MSC_VER
386 // Use the RAII idiom to flag mem allocs that are intentionally never
387 // deallocated. The motivation is to silence the false positive mem leaks
388 // that are reported by the debug version of MS's CRT which can only detect
389 // if an alloc is missing a matching deallocation.
390 // Example:
391 // MemoryIsNotDeallocated memory_is_not_deallocated;
392 // critical_section_ = new CRITICAL_SECTION;
393 //
394 class MemoryIsNotDeallocated
395 {
396  public:
397  MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
398  old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
399  // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
400  // doesn't report mem leak if there's no matching deallocation.
401  _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
402  }
403 
404  ~MemoryIsNotDeallocated() {
405  // Restore the original _CRTDBG_ALLOC_MEM_DF flag
406  _CrtSetDbgFlag(old_crtdbg_flag_);
407  }
408 
409  private:
410  int old_crtdbg_flag_;
411 
412  GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated);
413 };
414 #endif // _MSC_VER
415 
416 } // namespace
417 
418 // Initializes owner_thread_id_ and critical_section_ in static mutexes.
419 void Mutex::ThreadSafeLazyInit() {
420  // Dynamic mutexes are initialized in the constructor.
421  if (type_ == kStatic) {
422  switch (
423  ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
424  case 0:
425  // If critical_section_init_phase_ was 0 before the exchange, we
426  // are the first to test it and need to perform the initialization.
427  owner_thread_id_ = 0;
428  {
429  // Use RAII to flag that following mem alloc is never deallocated.
430 #ifdef _MSC_VER
431  MemoryIsNotDeallocated memory_is_not_deallocated;
432 #endif // _MSC_VER
433  critical_section_ = new CRITICAL_SECTION;
434  }
435  ::InitializeCriticalSection(critical_section_);
436  // Updates the critical_section_init_phase_ to 2 to signal
437  // initialization complete.
438  GTEST_CHECK_(::InterlockedCompareExchange(
439  &critical_section_init_phase_, 2L, 1L) ==
440  1L);
441  break;
442  case 1:
443  // Somebody else is already initializing the mutex; spin until they
444  // are done.
445  while (::InterlockedCompareExchange(&critical_section_init_phase_,
446  2L,
447  2L) != 2L) {
448  // Possibly yields the rest of the thread's time slice to other
449  // threads.
450  ::Sleep(0);
451  }
452  break;
453 
454  case 2:
455  break; // The mutex is already initialized and ready for use.
456 
457  default:
458  GTEST_CHECK_(false)
459  << "Unexpected value of critical_section_init_phase_ "
460  << "while initializing a static mutex.";
461  }
462  }
463 }
464 
465 namespace {
466 
467 class ThreadWithParamSupport : public ThreadWithParamBase {
468  public:
469  static HANDLE CreateThread(Runnable* runnable,
470  Notification* thread_can_start) {
471  ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
472  DWORD thread_id;
473  HANDLE thread_handle = ::CreateThread(
474  nullptr, // Default security.
475  0, // Default stack size.
476  &ThreadWithParamSupport::ThreadMain,
477  param, // Parameter to ThreadMainStatic
478  0x0, // Default creation flags.
479  &thread_id); // Need a valid pointer for the call to work under Win98.
480  GTEST_CHECK_(thread_handle != nullptr)
481  << "CreateThread failed with error " << ::GetLastError() << ".";
482  if (thread_handle == nullptr) {
483  delete param;
484  }
485  return thread_handle;
486  }
487 
488  private:
489  struct ThreadMainParam {
490  ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
491  : runnable_(runnable),
492  thread_can_start_(thread_can_start) {
493  }
494  std::unique_ptr<Runnable> runnable_;
495  // Does not own.
496  Notification* thread_can_start_;
497  };
498 
499  static DWORD WINAPI ThreadMain(void* ptr) {
500  // Transfers ownership.
501  std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
502  if (param->thread_can_start_ != nullptr)
503  param->thread_can_start_->WaitForNotification();
504  param->runnable_->Run();
505  return 0;
506  }
507 
508  // Prohibit instantiation.
509  ThreadWithParamSupport();
510 
511  GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
512 };
513 
514 } // namespace
515 
516 ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
517  Notification* thread_can_start)
518  : thread_(ThreadWithParamSupport::CreateThread(runnable,
519  thread_can_start)) {
520 }
521 
522 ThreadWithParamBase::~ThreadWithParamBase() {
523  Join();
524 }
525 
526 void ThreadWithParamBase::Join() {
527  GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
528  << "Failed to join the thread with error " << ::GetLastError() << ".";
529 }
530 
531 // Maps a thread to a set of ThreadIdToThreadLocals that have values
532 // instantiated on that thread and notifies them when the thread exits. A
533 // ThreadLocal instance is expected to persist until all threads it has
534 // values on have terminated.
535 class ThreadLocalRegistryImpl {
536  public:
537  // Registers thread_local_instance as having value on the current thread.
538  // Returns a value that can be used to identify the thread from other threads.
539  static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
540  const ThreadLocalBase* thread_local_instance) {
541 #ifdef _MSC_VER
542  MemoryIsNotDeallocated memory_is_not_deallocated;
543 #endif // _MSC_VER
544  DWORD current_thread = ::GetCurrentThreadId();
545  MutexLock lock(&mutex_);
546  ThreadIdToThreadLocals* const thread_to_thread_locals =
547  GetThreadLocalsMapLocked();
548  ThreadIdToThreadLocals::iterator thread_local_pos =
549  thread_to_thread_locals->find(current_thread);
550  if (thread_local_pos == thread_to_thread_locals->end()) {
551  thread_local_pos = thread_to_thread_locals->insert(
552  std::make_pair(current_thread, ThreadLocalValues())).first;
553  StartWatcherThreadFor(current_thread);
554  }
555  ThreadLocalValues& thread_local_values = thread_local_pos->second;
556  ThreadLocalValues::iterator value_pos =
557  thread_local_values.find(thread_local_instance);
558  if (value_pos == thread_local_values.end()) {
559  value_pos =
560  thread_local_values
561  .insert(std::make_pair(
562  thread_local_instance,
563  std::shared_ptr<ThreadLocalValueHolderBase>(
564  thread_local_instance->NewValueForCurrentThread())))
565  .first;
566  }
567  return value_pos->second.get();
568  }
569 
570  static void OnThreadLocalDestroyed(
571  const ThreadLocalBase* thread_local_instance) {
572  std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
573  // Clean up the ThreadLocalValues data structure while holding the lock, but
574  // defer the destruction of the ThreadLocalValueHolderBases.
575  {
576  MutexLock lock(&mutex_);
577  ThreadIdToThreadLocals* const thread_to_thread_locals =
578  GetThreadLocalsMapLocked();
579  for (ThreadIdToThreadLocals::iterator it =
580  thread_to_thread_locals->begin();
581  it != thread_to_thread_locals->end();
582  ++it) {
583  ThreadLocalValues& thread_local_values = it->second;
584  ThreadLocalValues::iterator value_pos =
585  thread_local_values.find(thread_local_instance);
586  if (value_pos != thread_local_values.end()) {
587  value_holders.push_back(value_pos->second);
588  thread_local_values.erase(value_pos);
589  // This 'if' can only be successful at most once, so theoretically we
590  // could break out of the loop here, but we don't bother doing so.
591  }
592  }
593  }
594  // Outside the lock, let the destructor for 'value_holders' deallocate the
595  // ThreadLocalValueHolderBases.
596  }
597 
598  static void OnThreadExit(DWORD thread_id) {
599  GTEST_CHECK_(thread_id != 0) << ::GetLastError();
600  std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
601  // Clean up the ThreadIdToThreadLocals data structure while holding the
602  // lock, but defer the destruction of the ThreadLocalValueHolderBases.
603  {
604  MutexLock lock(&mutex_);
605  ThreadIdToThreadLocals* const thread_to_thread_locals =
606  GetThreadLocalsMapLocked();
607  ThreadIdToThreadLocals::iterator thread_local_pos =
608  thread_to_thread_locals->find(thread_id);
609  if (thread_local_pos != thread_to_thread_locals->end()) {
610  ThreadLocalValues& thread_local_values = thread_local_pos->second;
611  for (ThreadLocalValues::iterator value_pos =
612  thread_local_values.begin();
613  value_pos != thread_local_values.end();
614  ++value_pos) {
615  value_holders.push_back(value_pos->second);
616  }
617  thread_to_thread_locals->erase(thread_local_pos);
618  }
619  }
620  // Outside the lock, let the destructor for 'value_holders' deallocate the
621  // ThreadLocalValueHolderBases.
622  }
623 
624  private:
625  // In a particular thread, maps a ThreadLocal object to its value.
626  typedef std::map<const ThreadLocalBase*,
627  std::shared_ptr<ThreadLocalValueHolderBase> >
628  ThreadLocalValues;
629  // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
630  // thread's ID.
631  typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
632 
633  // Holds the thread id and thread handle that we pass from
634  // StartWatcherThreadFor to WatcherThreadFunc.
635  typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
636 
637  static void StartWatcherThreadFor(DWORD thread_id) {
638  // The returned handle will be kept in thread_map and closed by
639  // watcher_thread in WatcherThreadFunc.
640  HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
641  FALSE,
642  thread_id);
643  GTEST_CHECK_(thread != nullptr);
644  // We need to pass a valid thread ID pointer into CreateThread for it
645  // to work correctly under Win98.
646  DWORD watcher_thread_id;
647  HANDLE watcher_thread = ::CreateThread(
648  nullptr, // Default security.
649  0, // Default stack size
650  &ThreadLocalRegistryImpl::WatcherThreadFunc,
651  reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
652  CREATE_SUSPENDED, &watcher_thread_id);
653  GTEST_CHECK_(watcher_thread != nullptr);
654  // Give the watcher thread the same priority as ours to avoid being
655  // blocked by it.
656  ::SetThreadPriority(watcher_thread,
657  ::GetThreadPriority(::GetCurrentThread()));
658  ::ResumeThread(watcher_thread);
659  ::CloseHandle(watcher_thread);
660  }
661 
662  // Monitors exit from a given thread and notifies those
663  // ThreadIdToThreadLocals about thread termination.
664  static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
665  const ThreadIdAndHandle* tah =
666  reinterpret_cast<const ThreadIdAndHandle*>(param);
667  GTEST_CHECK_(
668  ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
669  OnThreadExit(tah->first);
670  ::CloseHandle(tah->second);
671  delete tah;
672  return 0;
673  }
674 
675  // Returns map of thread local instances.
676  static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
677  mutex_.AssertHeld();
678 #ifdef _MSC_VER
679  MemoryIsNotDeallocated memory_is_not_deallocated;
680 #endif // _MSC_VER
681  static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
682  return map;
683  }
684 
685  // Protects access to GetThreadLocalsMapLocked() and its return value.
686  static Mutex mutex_;
687  // Protects access to GetThreadMapLocked() and its return value.
688  static Mutex thread_map_mutex_;
689 };
690 
691 Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
692 Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
693 
694 ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
695  const ThreadLocalBase* thread_local_instance) {
696  return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
697  thread_local_instance);
698 }
699 
700 void ThreadLocalRegistry::OnThreadLocalDestroyed(
701  const ThreadLocalBase* thread_local_instance) {
702  ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
703 }
704 
705 #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
706 
707 #if GTEST_USES_POSIX_RE
708 
709 // Implements RE. Currently only needed for death tests.
710 
711 RE::~RE() {
712  if (is_valid_) {
713  // regfree'ing an invalid regex might crash because the content
714  // of the regex is undefined. Since the regex's are essentially
715  // the same, one cannot be valid (or invalid) without the other
716  // being so too.
717  regfree(&partial_regex_);
718  regfree(&full_regex_);
719  }
720  free(const_cast<char*>(pattern_));
721 }
722 
723 // Returns true if and only if regular expression re matches the entire str.
724 bool RE::FullMatch(const char* str, const RE& re) {
725  if (!re.is_valid_) return false;
726 
727  regmatch_t match;
728  return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
729 }
730 
731 // Returns true if and only if regular expression re matches a substring of
732 // str (including str itself).
733 bool RE::PartialMatch(const char* str, const RE& re) {
734  if (!re.is_valid_) return false;
735 
736  regmatch_t match;
737  return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
738 }
739 
740 // Initializes an RE from its string representation.
741 void RE::Init(const char* regex) {
742  pattern_ = posix::StrDup(regex);
743 
744  // Reserves enough bytes to hold the regular expression used for a
745  // full match.
746  const size_t full_regex_len = strlen(regex) + 10;
747  char* const full_pattern = new char[full_regex_len];
748 
749  snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
750  is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
751  // We want to call regcomp(&partial_regex_, ...) even if the
752  // previous expression returns false. Otherwise partial_regex_ may
753  // not be properly initialized can may cause trouble when it's
754  // freed.
755  //
756  // Some implementation of POSIX regex (e.g. on at least some
757  // versions of Cygwin) doesn't accept the empty string as a valid
758  // regex. We change it to an equivalent form "()" to be safe.
759  if (is_valid_) {
760  const char* const partial_regex = (*regex == '\0') ? "()" : regex;
761  is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
762  }
763  EXPECT_TRUE(is_valid_)
764  << "Regular expression \"" << regex
765  << "\" is not a valid POSIX Extended regular expression.";
766 
767  delete[] full_pattern;
768 }
769 
770 #elif GTEST_USES_SIMPLE_RE
771 
772 // Returns true if and only if ch appears anywhere in str (excluding the
773 // terminating '\0' character).
774 bool IsInSet(char ch, const char* str) {
775  return ch != '\0' && strchr(str, ch) != nullptr;
776 }
777 
778 // Returns true if and only if ch belongs to the given classification.
779 // Unlike similar functions in <ctype.h>, these aren't affected by the
780 // current locale.
781 bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
782 bool IsAsciiPunct(char ch) {
783  return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
784 }
785 bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
786 bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
787 bool IsAsciiWordChar(char ch) {
788  return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
789  ('0' <= ch && ch <= '9') || ch == '_';
790 }
791 
792 // Returns true if and only if "\\c" is a supported escape sequence.
793 bool IsValidEscape(char c) {
794  return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
795 }
796 
797 // Returns true if and only if the given atom (specified by escaped and
798 // pattern) matches ch. The result is undefined if the atom is invalid.
799 bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
800  if (escaped) { // "\\p" where p is pattern_char.
801  switch (pattern_char) {
802  case 'd': return IsAsciiDigit(ch);
803  case 'D': return !IsAsciiDigit(ch);
804  case 'f': return ch == '\f';
805  case 'n': return ch == '\n';
806  case 'r': return ch == '\r';
807  case 's': return IsAsciiWhiteSpace(ch);
808  case 'S': return !IsAsciiWhiteSpace(ch);
809  case 't': return ch == '\t';
810  case 'v': return ch == '\v';
811  case 'w': return IsAsciiWordChar(ch);
812  case 'W': return !IsAsciiWordChar(ch);
813  }
814  return IsAsciiPunct(pattern_char) && pattern_char == ch;
815  }
816 
817  return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
818 }
819 
820 // Helper function used by ValidateRegex() to format error messages.
821 static std::string FormatRegexSyntaxError(const char* regex, int index) {
822  return (Message() << "Syntax error at index " << index
823  << " in simple regular expression \"" << regex << "\": ").GetString();
824 }
825 
826 // Generates non-fatal failures and returns false if regex is invalid;
827 // otherwise returns true.
828 bool ValidateRegex(const char* regex) {
829  if (regex == nullptr) {
830  ADD_FAILURE() << "NULL is not a valid simple regular expression.";
831  return false;
832  }
833 
834  bool is_valid = true;
835 
836  // True if and only if ?, *, or + can follow the previous atom.
837  bool prev_repeatable = false;
838  for (int i = 0; regex[i]; i++) {
839  if (regex[i] == '\\') { // An escape sequence
840  i++;
841  if (regex[i] == '\0') {
842  ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
843  << "'\\' cannot appear at the end.";
844  return false;
845  }
846 
847  if (!IsValidEscape(regex[i])) {
848  ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
849  << "invalid escape sequence \"\\" << regex[i] << "\".";
850  is_valid = false;
851  }
852  prev_repeatable = true;
853  } else { // Not an escape sequence.
854  const char ch = regex[i];
855 
856  if (ch == '^' && i > 0) {
857  ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
858  << "'^' can only appear at the beginning.";
859  is_valid = false;
860  } else if (ch == '$' && regex[i + 1] != '\0') {
861  ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
862  << "'$' can only appear at the end.";
863  is_valid = false;
864  } else if (IsInSet(ch, "()[]{}|")) {
865  ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
866  << "'" << ch << "' is unsupported.";
867  is_valid = false;
868  } else if (IsRepeat(ch) && !prev_repeatable) {
869  ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
870  << "'" << ch << "' can only follow a repeatable token.";
871  is_valid = false;
872  }
873 
874  prev_repeatable = !IsInSet(ch, "^$?*+");
875  }
876  }
877 
878  return is_valid;
879 }
880 
881 // Matches a repeated regex atom followed by a valid simple regular
882 // expression. The regex atom is defined as c if escaped is false,
883 // or \c otherwise. repeat is the repetition meta character (?, *,
884 // or +). The behavior is undefined if str contains too many
885 // characters to be indexable by size_t, in which case the test will
886 // probably time out anyway. We are fine with this limitation as
887 // std::string has it too.
888 bool MatchRepetitionAndRegexAtHead(
889  bool escaped, char c, char repeat, const char* regex,
890  const char* str) {
891  const size_t min_count = (repeat == '+') ? 1 : 0;
892  const size_t max_count = (repeat == '?') ? 1 :
893  static_cast<size_t>(-1) - 1;
894  // We cannot call numeric_limits::max() as it conflicts with the
895  // max() macro on Windows.
896 
897  for (size_t i = 0; i <= max_count; ++i) {
898  // We know that the atom matches each of the first i characters in str.
899  if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
900  // We have enough matches at the head, and the tail matches too.
901  // Since we only care about *whether* the pattern matches str
902  // (as opposed to *how* it matches), there is no need to find a
903  // greedy match.
904  return true;
905  }
906  if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
907  return false;
908  }
909  return false;
910 }
911 
912 // Returns true if and only if regex matches a prefix of str. regex must
913 // be a valid simple regular expression and not start with "^", or the
914 // result is undefined.
915 bool MatchRegexAtHead(const char* regex, const char* str) {
916  if (*regex == '\0') // An empty regex matches a prefix of anything.
917  return true;
918 
919  // "$" only matches the end of a string. Note that regex being
920  // valid guarantees that there's nothing after "$" in it.
921  if (*regex == '$')
922  return *str == '\0';
923 
924  // Is the first thing in regex an escape sequence?
925  const bool escaped = *regex == '\\';
926  if (escaped)
927  ++regex;
928  if (IsRepeat(regex[1])) {
929  // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
930  // here's an indirect recursion. It terminates as the regex gets
931  // shorter in each recursion.
932  return MatchRepetitionAndRegexAtHead(
933  escaped, regex[0], regex[1], regex + 2, str);
934  } else {
935  // regex isn't empty, isn't "$", and doesn't start with a
936  // repetition. We match the first atom of regex with the first
937  // character of str and recurse.
938  return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
939  MatchRegexAtHead(regex + 1, str + 1);
940  }
941 }
942 
943 // Returns true if and only if regex matches any substring of str. regex must
944 // be a valid simple regular expression, or the result is undefined.
945 //
946 // The algorithm is recursive, but the recursion depth doesn't exceed
947 // the regex length, so we won't need to worry about running out of
948 // stack space normally. In rare cases the time complexity can be
949 // exponential with respect to the regex length + the string length,
950 // but usually it's must faster (often close to linear).
951 bool MatchRegexAnywhere(const char* regex, const char* str) {
952  if (regex == nullptr || str == nullptr) return false;
953 
954  if (*regex == '^')
955  return MatchRegexAtHead(regex + 1, str);
956 
957  // A successful match can be anywhere in str.
958  do {
959  if (MatchRegexAtHead(regex, str))
960  return true;
961  } while (*str++ != '\0');
962  return false;
963 }
964 
965 // Implements the RE class.
966 
967 RE::~RE() {
968  free(const_cast<char*>(pattern_));
969  free(const_cast<char*>(full_pattern_));
970 }
971 
972 // Returns true if and only if regular expression re matches the entire str.
973 bool RE::FullMatch(const char* str, const RE& re) {
974  return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
975 }
976 
977 // Returns true if and only if regular expression re matches a substring of
978 // str (including str itself).
979 bool RE::PartialMatch(const char* str, const RE& re) {
980  return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
981 }
982 
983 // Initializes an RE from its string representation.
984 void RE::Init(const char* regex) {
985  pattern_ = full_pattern_ = nullptr;
986  if (regex != nullptr) {
987  pattern_ = posix::StrDup(regex);
988  }
989 
990  is_valid_ = ValidateRegex(regex);
991  if (!is_valid_) {
992  // No need to calculate the full pattern when the regex is invalid.
993  return;
994  }
995 
996  const size_t len = strlen(regex);
997  // Reserves enough bytes to hold the regular expression used for a
998  // full match: we need space to prepend a '^', append a '$', and
999  // terminate the string with '\0'.
1000  char* buffer = static_cast<char*>(malloc(len + 3));
1001  full_pattern_ = buffer;
1002 
1003  if (*regex != '^')
1004  *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'.
1005 
1006  // We don't use snprintf or strncpy, as they trigger a warning when
1007  // compiled with VC++ 8.0.
1008  memcpy(buffer, regex, len);
1009  buffer += len;
1010 
1011  if (len == 0 || regex[len - 1] != '$')
1012  *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'.
1013 
1014  *buffer = '\0';
1015 }
1016 
1017 #endif // GTEST_USES_POSIX_RE
1018 
1019 const char kUnknownFile[] = "unknown file";
1020 
1021 // Formats a source file path and a line number as they would appear
1022 // in an error message from the compiler used to compile this code.
1023 GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
1024  const std::string file_name(file == nullptr ? kUnknownFile : file);
1025 
1026  if (line < 0) {
1027  return file_name + ":";
1028  }
1029 #ifdef _MSC_VER
1030  return file_name + "(" + StreamableToString(line) + "):";
1031 #else
1032  return file_name + ":" + StreamableToString(line) + ":";
1033 #endif // _MSC_VER
1034 }
1035 
1036 // Formats a file location for compiler-independent XML output.
1037 // Although this function is not platform dependent, we put it next to
1038 // FormatFileLocation in order to contrast the two functions.
1039 // Note that FormatCompilerIndependentFileLocation() does NOT append colon
1040 // to the file location it produces, unlike FormatFileLocation().
1041 GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
1042  const char* file, int line) {
1043  const std::string file_name(file == nullptr ? kUnknownFile : file);
1044 
1045  if (line < 0)
1046  return file_name;
1047  else
1048  return file_name + ":" + StreamableToString(line);
1049 }
1050 
1051 GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
1052  : severity_(severity) {
1053  const char* const marker =
1054  severity == GTEST_INFO ? "[ INFO ]" :
1055  severity == GTEST_WARNING ? "[WARNING]" :
1056  severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]";
1057  GetStream() << ::std::endl << marker << " "
1058  << FormatFileLocation(file, line).c_str() << ": ";
1059 }
1060 
1061 // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
1063  GetStream() << ::std::endl;
1064  if (severity_ == GTEST_FATAL) {
1065  fflush(stderr);
1066  posix::Abort();
1067  }
1068 }
1069 
1070 // Disable Microsoft deprecation warnings for POSIX functions called from
1071 // this class (creat, dup, dup2, and close)
1073 
1074 #if GTEST_HAS_STREAM_REDIRECTION
1075 
1076 // Object that captures an output stream (stdout/stderr).
1077 class CapturedStream {
1078  public:
1079  // The ctor redirects the stream to a temporary file.
1080  explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
1081 # if GTEST_OS_WINDOWS
1082  char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1083  char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1084 
1085  ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
1086  const UINT success = ::GetTempFileNameA(temp_dir_path,
1087  "gtest_redir",
1088  0, // Generate unique file name.
1089  temp_file_path);
1090  GTEST_CHECK_(success != 0)
1091  << "Unable to create a temporary file in " << temp_dir_path;
1092  const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
1093  GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
1094  << temp_file_path;
1095  filename_ = temp_file_path;
1096 # else
1097  // There's no guarantee that a test has write access to the current
1098  // directory, so we create the temporary file in the /tmp directory
1099  // instead. We use /tmp on most systems, and /sdcard on Android.
1100  // That's because Android doesn't have /tmp.
1101 # if GTEST_OS_LINUX_ANDROID
1102  // Note: Android applications are expected to call the framework's
1103  // Context.getExternalStorageDirectory() method through JNI to get
1104  // the location of the world-writable SD Card directory. However,
1105  // this requires a Context handle, which cannot be retrieved
1106  // globally from native code. Doing so also precludes running the
1107  // code as part of a regular standalone executable, which doesn't
1108  // run in a Dalvik process (e.g. when running it through 'adb shell').
1109  //
1110  // The location /data/local/tmp is directly accessible from native code.
1111  // '/sdcard' and other variants cannot be relied on, as they are not
1112  // guaranteed to be mounted, or may have a delay in mounting.
1113  char name_template[] = "/data/local/tmp/gtest_captured_stream.XXXXXX";
1114 # else
1115  char name_template[] = "/tmp/captured_stream.XXXXXX";
1116 # endif // GTEST_OS_LINUX_ANDROID
1117  const int captured_fd = mkstemp(name_template);
1118  if (captured_fd == -1) {
1119  GTEST_LOG_(WARNING)
1120  << "Failed to create tmp file " << name_template
1121  << " for test; does the test have access to the /tmp directory?";
1122  }
1123  filename_ = name_template;
1124 # endif // GTEST_OS_WINDOWS
1125  fflush(nullptr);
1126  dup2(captured_fd, fd_);
1127  close(captured_fd);
1128  }
1129 
1130  ~CapturedStream() {
1131  remove(filename_.c_str());
1132  }
1133 
1134  std::string GetCapturedString() {
1135  if (uncaptured_fd_ != -1) {
1136  // Restores the original stream.
1137  fflush(nullptr);
1138  dup2(uncaptured_fd_, fd_);
1139  close(uncaptured_fd_);
1140  uncaptured_fd_ = -1;
1141  }
1142 
1143  FILE* const file = posix::FOpen(filename_.c_str(), "r");
1144  if (file == nullptr) {
1145  GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_
1146  << " for capturing stream.";
1147  }
1148  const std::string content = ReadEntireFile(file);
1149  posix::FClose(file);
1150  return content;
1151  }
1152 
1153  private:
1154  const int fd_; // A stream to capture.
1155  int uncaptured_fd_;
1156  // Name of the temporary file holding the stderr output.
1157  ::std::string filename_;
1158 
1159  GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
1160 };
1161 
1163 
1164 static CapturedStream* g_captured_stderr = nullptr;
1165 static CapturedStream* g_captured_stdout = nullptr;
1166 
1167 // Starts capturing an output stream (stdout/stderr).
1168 static void CaptureStream(int fd, const char* stream_name,
1169  CapturedStream** stream) {
1170  if (*stream != nullptr) {
1171  GTEST_LOG_(FATAL) << "Only one " << stream_name
1172  << " capturer can exist at a time.";
1173  }
1174  *stream = new CapturedStream(fd);
1175 }
1176 
1177 // Stops capturing the output stream and returns the captured string.
1178 static std::string GetCapturedStream(CapturedStream** captured_stream) {
1179  const std::string content = (*captured_stream)->GetCapturedString();
1180 
1181  delete *captured_stream;
1182  *captured_stream = nullptr;
1183 
1184  return content;
1185 }
1186 
1187 // Starts capturing stdout.
1188 void CaptureStdout() {
1189  CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
1190 }
1191 
1192 // Starts capturing stderr.
1193 void CaptureStderr() {
1194  CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
1195 }
1196 
1197 // Stops capturing stdout and returns the captured string.
1198 std::string GetCapturedStdout() {
1199  return GetCapturedStream(&g_captured_stdout);
1200 }
1201 
1202 // Stops capturing stderr and returns the captured string.
1203 std::string GetCapturedStderr() {
1204  return GetCapturedStream(&g_captured_stderr);
1205 }
1206 
1207 #endif // GTEST_HAS_STREAM_REDIRECTION
1208 
1209 
1210 
1211 
1212 
1213 size_t GetFileSize(FILE* file) {
1214  fseek(file, 0, SEEK_END);
1215  return static_cast<size_t>(ftell(file));
1216 }
1217 
1218 std::string ReadEntireFile(FILE* file) {
1219  const size_t file_size = GetFileSize(file);
1220  char* const buffer = new char[file_size];
1221 
1222  size_t bytes_last_read = 0; // # of bytes read in the last fread()
1223  size_t bytes_read = 0; // # of bytes read so far
1224 
1225  fseek(file, 0, SEEK_SET);
1226 
1227  // Keeps reading the file until we cannot read further or the
1228  // pre-determined file size is reached.
1229  do {
1230  bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
1231  bytes_read += bytes_last_read;
1232  } while (bytes_last_read > 0 && bytes_read < file_size);
1233 
1234  const std::string content(buffer, bytes_read);
1235  delete[] buffer;
1236 
1237  return content;
1238 }
1239 
1240 #if GTEST_HAS_DEATH_TEST
1241 static const std::vector<std::string>* g_injected_test_argvs =
1242  nullptr; // Owned.
1243 
1244 std::vector<std::string> GetInjectableArgvs() {
1245  if (g_injected_test_argvs != nullptr) {
1246  return *g_injected_test_argvs;
1247  }
1248  return GetArgvs();
1249 }
1250 
1251 void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
1252  if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
1253  g_injected_test_argvs = new_argvs;
1254 }
1255 
1256 void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
1257  SetInjectableArgvs(
1258  new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
1259 }
1260 
1261 void ClearInjectableArgvs() {
1262  delete g_injected_test_argvs;
1263  g_injected_test_argvs = nullptr;
1264 }
1265 #endif // GTEST_HAS_DEATH_TEST
1266 
1267 #if GTEST_OS_WINDOWS_MOBILE
1268 namespace posix {
1269 void Abort() {
1270  DebugBreak();
1271  TerminateProcess(GetCurrentProcess(), 1);
1272 }
1273 } // namespace posix
1274 #endif // GTEST_OS_WINDOWS_MOBILE
1275 
1276 // Returns the name of the environment variable corresponding to the
1277 // given flag. For example, FlagToEnvVar("foo") will return
1278 // "GTEST_FOO" in the open-source version.
1279 static std::string FlagToEnvVar(const char* flag) {
1280  const std::string full_flag =
1281  (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
1282 
1283  Message env_var;
1284  for (size_t i = 0; i != full_flag.length(); i++) {
1285  env_var << ToUpper(full_flag.c_str()[i]);
1286  }
1287 
1288  return env_var.GetString();
1289 }
1290 
1291 // Parses 'str' for a 32-bit signed integer. If successful, writes
1292 // the result to *value and returns true; otherwise leaves *value
1293 // unchanged and returns false.
1294 bool ParseInt32(const Message& src_text, const char* str, int32_t* value) {
1295  // Parses the environment variable as a decimal integer.
1296  char* end = nullptr;
1297  const long long_value = strtol(str, &end, 10); // NOLINT
1298 
1299  // Has strtol() consumed all characters in the string?
1300  if (*end != '\0') {
1301  // No - an invalid character was encountered.
1302  Message msg;
1303  msg << "WARNING: " << src_text
1304  << " is expected to be a 32-bit integer, but actually"
1305  << " has value \"" << str << "\".\n";
1306  printf("%s", msg.GetString().c_str());
1307  fflush(stdout);
1308  return false;
1309  }
1310 
1311  // Is the parsed value in the range of an int32_t?
1312  const auto result = static_cast<int32_t>(long_value);
1313  if (long_value == LONG_MAX || long_value == LONG_MIN ||
1314  // The parsed value overflows as a long. (strtol() returns
1315  // LONG_MAX or LONG_MIN when the input overflows.)
1316  result != long_value
1317  // The parsed value overflows as an int32_t.
1318  ) {
1319  Message msg;
1320  msg << "WARNING: " << src_text
1321  << " is expected to be a 32-bit integer, but actually"
1322  << " has value " << str << ", which overflows.\n";
1323  printf("%s", msg.GetString().c_str());
1324  fflush(stdout);
1325  return false;
1326  }
1327 
1328  *value = result;
1329  return true;
1330 }
1331 
1332 // Reads and returns the Boolean environment variable corresponding to
1333 // the given flag; if it's not set, returns default_value.
1334 //
1335 // The value is considered true if and only if it's not "0".
1336 bool BoolFromGTestEnv(const char* flag, bool default_value) {
1337 #if defined(GTEST_GET_BOOL_FROM_ENV_)
1338  return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
1339 #else
1340  const std::string env_var = FlagToEnvVar(flag);
1341  const char* const string_value = posix::GetEnv(env_var.c_str());
1342  return string_value == nullptr ? default_value
1343  : strcmp(string_value, "0") != 0;
1344 #endif // defined(GTEST_GET_BOOL_FROM_ENV_)
1345 }
1346 
1347 // Reads and returns a 32-bit integer stored in the environment
1348 // variable corresponding to the given flag; if it isn't set or
1349 // doesn't represent a valid 32-bit integer, returns default_value.
1350 int32_t Int32FromGTestEnv(const char* flag, int32_t default_value) {
1351 #if defined(GTEST_GET_INT32_FROM_ENV_)
1352  return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
1353 #else
1354  const std::string env_var = FlagToEnvVar(flag);
1355  const char* const string_value = posix::GetEnv(env_var.c_str());
1356  if (string_value == nullptr) {
1357  // The environment variable is not set.
1358  return default_value;
1359  }
1360 
1361  int32_t result = default_value;
1362  if (!ParseInt32(Message() << "Environment variable " << env_var,
1363  string_value, &result)) {
1364  printf("The default value %s is used.\n",
1365  (Message() << default_value).GetString().c_str());
1366  fflush(stdout);
1367  return default_value;
1368  }
1369 
1370  return result;
1371 #endif // defined(GTEST_GET_INT32_FROM_ENV_)
1372 }
1373 
1374 // As a special case for the 'output' flag, if GTEST_OUTPUT is not
1375 // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
1376 // system. The value of XML_OUTPUT_FILE is a filename without the
1377 // "xml:" prefix of GTEST_OUTPUT.
1378 // Note that this is meant to be called at the call site so it does
1379 // not check that the flag is 'output'
1380 // In essence this checks an env variable called XML_OUTPUT_FILE
1381 // and if it is set we prepend "xml:" to its value, if it not set we return ""
1383  std::string default_value_for_output_flag = "";
1384  const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
1385  if (nullptr != xml_output_file_env) {
1386  default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
1387  }
1388  return default_value_for_output_flag;
1389 }
1390 
1391 // Reads and returns the string environment variable corresponding to
1392 // the given flag; if it's not set, returns default_value.
1393 const char* StringFromGTestEnv(const char* flag, const char* default_value) {
1394 #if defined(GTEST_GET_STRING_FROM_ENV_)
1395  return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
1396 #else
1397  const std::string env_var = FlagToEnvVar(flag);
1398  const char* const value = posix::GetEnv(env_var.c_str());
1399  return value == nullptr ? default_value : value;
1400 #endif // defined(GTEST_GET_STRING_FROM_ENV_)
1401 }
1402 
1403 } // namespace internal
1404 } // namespace testing
GTEST_API_ int32_t Int32FromGTestEnv(const char *flag, int32_t default_val)
Definition: gtest-port.cc:1350
GTEST_API_ std::string GetCapturedStdout()
GTEST_API_ std::string GetCapturedStderr()
#define GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
Definition: gtest-port.h:337
const char * StringFromGTestEnv(const char *flag, const char *default_val)
Definition: gtest-port.cc:1393
#define GTEST_LOG_(severity)
Definition: gtest-port.h:980
GTEST_API_::std::string FormatFileLocation(const char *file, int line)
Definition: gtest-port.cc:1023
GTEST_API_ size_t GetThreadCount()
Definition: gtest-port.cc:273
const char * GetEnv(const char *name)
Definition: gtest-port.h:2085
GTEST_API_ void CaptureStdout()
#define GTEST_DISABLE_MSC_DEPRECATED_POP_()
Definition: gtest-port.h:339
GTEST_API_ std::vector< std::string > GetArgvs()
Definition: gtest.cc:587
static std::string FlagToEnvVar(const char *flag)
Definition: gtest-port.cc:1279
std::string StreamableToString(const T &streamable)
GTEST_API_ std::string ReadEntireFile(FILE *file)
Definition: gtest-port.cc:1218
GTEST_API_ bool ParseInt32(const Message &src_text, const char *str, int32_t *value)
Definition: gtest-port.cc:1294
#define T
Definition: Sacado_rad.hpp:573
::std::ostream & GetStream()
Definition: gtest-port.h:970
const GTestLogSeverity severity_
Definition: gtest-port.h:973
std::string filename
expr expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c *expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr2 expr1 expr2 expr1 expr1 expr1 c
#define GTEST_CHECK_(condition)
Definition: gtest-port.h:1004
GTEST_API_ size_t GetFileSize(FILE *file)
Definition: gtest-port.cc:1213
GTestMutexLock MutexLock
Definition: gtest-port.h:1882
std::string GetString() const
Definition: gtest.cc:1168
GTEST_API_::std::string FormatCompilerIndependentFileLocation(const char *file, int line)
Definition: gtest-port.cc:1041
bool BoolFromGTestEnv(const char *flag, bool default_val)
Definition: gtest-port.cc:1336
FILE * FOpen(const char *path, const char *mode)
Definition: gtest-port.h:2057
int value
const char kUnknownFile[]
Definition: gtest-port.cc:1019
char ToUpper(char ch)
Definition: gtest-port.h:1947
GTEST_API_ void CaptureStderr()
#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)
Definition: gtest-port.h:693
const int kStdErrFileno
Definition: gtest-port.cc:98
const int kStdOutFileno
Definition: gtest-port.cc:97
#define EXPECT_TRUE(condition)
Definition: gtest.h:1979
#define ADD_FAILURE()
Definition: gtest.h:1923
char * StrDup(const char *src)
Definition: gtest-port.h:2029
std::string OutputFlagAlsoCheckEnvVar()
Definition: gtest-port.cc:1382
#define GTEST_FLAG_PREFIX_
Definition: gtest-port.h:292