Sandia

Exceptional service in the national interest National
Laboratories

Michael Heroux, Sandia National
Laboratories, USA

U.S. DEPARTMENT OF ///A ' A' DW‘
ENERGY //{,’ v“ ,”9”9"::1 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

fational Nuclear Security Administration Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia
rl1 National

Laboratories

New Trends and Responses

" |ncreasing data parallelism:
= Design for vectorization and increasing vector lengths.
= SIMT a bit more general, but fits under here.
" |ncreasing core count:
= Expose task level parallelism.
= Express task using DAG or similar constructs.
= Reduced memory size:
= Express algorithms as multi-precision.
= Compute data vs. store
= Memory architecture complexity:
= Localize allocation/initialization.
= Favor algorithms with higher compute/communication ratio.

= Resilience:
= Distinguish what must be reliably computed.
= |ncorporate bit-state uncertainty into broader UQ contexts?

FUTURE PARALLEL APPLICATION
DESIGN: SUGGESTED PRACTICES

National

#1: Encapsulate All Computation @&

= Fortran/C functions, done. IF no globals/commons.

= Methods in classes:
= Extract Loops.
= Create catalog of functions.
= Functions usable as:

= Kernels from OpenMP, TBB, etc.
= Starting point for lambda/functor based design.

= Starting point for thread-safe methods.

A Simple Epetra/AztecOO Program M.

// Header files omitted...

int main(int argc, char *argv[]) { /[***** Create x and b vectors *****
MPI_Init(&argc,&argv); // Initialize MPI, MpiComm Epetra_Vector x(Map);
Epetra_MpiComm Comm(MPI_COMM_WORLD); Epetra_Vector b(Map);

b.Random(); // Fill RHS with random #s

/Il ***** Map puts same number of equations on each pe *****

[l ***** Create Linear Problem *****

int NumMyElements = 1000 ; Epetra_LinearProblem problem(&A, &x, &b);

Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

/[***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.lterate(1000, 1.0E-8);

/| ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (lnt |=0, i<NumMyE|ements; i++) { // kkkkk Report reSU|tS, flnlSh :**********************
int GlobalRow = A.GRID(); cout << "Solver performed " << solver.Numlters()
int RowLess1 = GlobalRow - 1; << :: iterations.” << end|)
int RowPlus1 = GlobalRow + 1; << "Norm of true residual =
if (RowLess1!=-1) << solver.TrueResidual()
A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowlLess1); <<endl;
if (RowPlus1!=NumGlobalElements) o
A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1); MPI_Finalize() ;
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow); }return 0;
}

A.FillComplete(); // Transform from GIDs to LIDs

l—zg;

Construction for Irregular Data:) e,
Common Pattern

Fill: Insert data.
*Analyze |l: Graphs.
Compute: Use the data object.

#2 Construction for Irregular Data: Bit by Bit
The Path to Scalable Threading

= Count:
= “Dry-run of allocation and fill.
= Resist allocating storage.

= Analyze I:

= Determine required storage, who should
allocate.

= Allocate:

= Coordinated, varies across platforms.
= |nitialize:
= |Improved locality.
= Fill: Insert data.
= Analyze Il: Graphs.
= Compute: Finally.

Sandia
National
Laboratories

Sandia
rl1 National
Laboratories

3: TASK-CENTRIC/DATAFLOW DESIGN

Classic HPC Application Architecture i) Mo

Laboratories

o Logically Bulk-Synchronous, SPMD

o Basic Attributes:
o Halo exchange.

o Local compute.
4 o Global collective.
/| Subdomain
/| 1 per MPI process o Halo exchange.

o Strengths:

o Portable to many specific system

architectures. 0 Weaknesses:

o Separation of parallel model

(SPMD) from implementation (e.g., o Not well suited (as-is) to emerging

o Domain scientists write sequential o Unable to exploit functional on-chip
code within a parallel SPMD parallelism.
framework. - _
" o Difficult to tolerate dynamic
o Supports traditional languages)
(Fortran, C). latencies.
o Many more, well known. o Difficult to support task/compute

heterogeneity.

Task-centric/Dataflow Application Architecture rh) e

o Strengths:

o Portable to many specific system
architectures.

o Separation of parallel model from
implementation.

o Domain scientists write sequential code
within a parallel framework.

o Supports traditional languages (Fortran, C).

o Similar to SPMD in many ways.

10

Laboratories

Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

Task: Functionality defined on a patch.

Many tasks on many patches.

Patch
Many per MPI process

o More strengths:

Well suited to emerging manycore
systems.

Can expiloit functional on-chip
parallelism.

Can tolerate dynamic latencies.

Can support task/compute
heterogeneity.

Task on a Patch

= Patch: Small subdomain or subgraph.

Big enough to run efficiently once its starts execution.
CPU core: Need ~1 millisecond for today’s best runtimes (e.g. Legion).

GPU: Give it big patches. GPU runtime does manytasking very well on its own.

= Task code (Domain scientist writes most of this code):

Standard Fortran, C, C++ code.
E.g. FEM stiffness matrix setup on a “workset” of elements.
Should vectorize (CPUs) or SIMT (GPUs).

Should have small thread-count parallel (OpenMP)
Take advantage of shared cache/DRAM for UMA cores.

Source line count of task code should be tunable.
Too coarse grain task:

— GPU: Too much register state, register spills.

— CPU: Poor temporal locality. Not enough tasks for latency hiding.
Too fine grain:

— Too much overhead or

— Patches too big to keep task execution at 1 millisec.

Sandia
National
Laboratories

Portable Task Coding Environment

Task code must run on many types of cores:

= Standard multicore (e.g., Haswell).

= Manycore (Intel PHI, KNC, KNL).

= GPU (Nvidia).
= Desire:

= Write single source.

= Compile phase adapts for target core type.

= Sounds like what?
= Kokkos (and others: OCCA, ...):

= Enable meta programming for multiple target core architectures.
= Future: Fortran/C/C++ with OpenMP 4:

= Limited execution patterns, but very usable.

= Like programming MPI codes today: Déja vu for domain scientists.
= QOther future: C++ with Kokkos in std namespace.

= Broader execution pattern selection, more complicated.

Sandia
National _
Laboratories

Sandia
Task Management Layer)
New layer in application and runtime:
= Enables (async) task launch: latency hiding, load balancing.

= Provides technique for declaring inter-task dependencies:

Data read/write (Legion).
— Task A writes to variable x, B depends on x. A must complete before B starts.

Futures:
— Explicit encapsulation of dependency. Task B depends on A’s future.

Alternative: Explicit DAG management.
= Aware of temporal locality:
Better to run B on the same core as A to exploit cache locality.

= Awareness of data staging requirements:

Task should not be scheduled until its data are ready:
— If B depends on remote data (retrieved by A).

= Manage heterogeneous execution: A on Haswell, B on PHI.
= Resilience: If task A launched task B, A can relaunch B if B fails or times out.

What are the app vs. runtime responsibilities?
How can each assist the other?

Task-centric Benefits h) e,

= Task-centric: Many tasks
o MPI: = Async dispatch: Many in flight.
o Halo exchange. = Natural latency hiding.

o Local compute. = Higher message injection rates.
o Global collective.
(m]

Halo exchange.

= Better load balancing.

= Compatible with “classics”:

= Fortran, vectorization, small-scale
OMP.

= Used within a task.

= Natural resilience model:

= Every task has a parent (can
regenerate).

= Demonstrated concept:
= Co-Design centers, PSAAP2, others.

= Task execution requirements:

Task-centric/Dataflow Application Architecture

Characteristics

Tunable work size: Enough to
efficiently use a core once
scheduled.

Vector/SIMT capabilities.
Small thread-count SMP.
Task data dependencies.
Accelerator mode: Big patch.

= Universal portability:

15

Works within node, across
nodes.

Works across heterogeneous
core types.

Sandia
rl'l National

Laboratories

Many tasks:
= Async dispatch: Many in flight.
= Natural latency hiding.
= Higher message injection rates.
= Better load balancing.

Compatible with “classics”:

= Fortran, C, OpenMP.
= Used within a task.

Natural resilience model:

= Every task has a parent (can
regenerate).

Demonstrated concept:
= Co-Design centers, PSAAP2, others.

16

Open Questions for Task-Centric/Dataflow Strategies

= Functional vs. Data decomposition.
= Qver-decomposition of spatial domain:
Clearly useful, challenging to implement.
= Functional decomposition:

Easier to implement. Challenging to execute efficiently (temporal
locality).

= Dependency specification mechanism.

= How do apps specify inter-task dependencies?

= Futures (e.g., C++, HPX), data addresses (Legion), explicit (Uintah).

= Roles & Responsibilities: App vs Libs vs Runtime vs OS.
= |nterfaces between layers.
= Huge area of R&D for many years.

Sandia
National
Laboratories

Open Questions for Task-Centric/Dataflow Strategies ()i,

Laboratories

= Functional vs. Data decomposition. Data challenges:

= Qver-decomposition of spatial domain:

= Read/write functions:
Clearly useful, challenging to implement.

. L = Must be task compatible.
= Functional decomposition:

. . . = Thread-safe, non-blocking, etc.
Easier to implement. Challenging to

execute efficiently (temporal locality). = Versioning:
= Dependency specification mechanism. = Computation may be executing across
= How do apps specify inter-task multiple logically distinct phases (e.g.
dependencies? timesteps)
= Futures (e.g., C++, HPX), data addresses = Example: Data must exist at each grid
(Legion), explicit (Uintah). point and for all active timesteps.
= Roles & Responsibilities: App vs Libs vs = Global operations:
Runtime vs OS. = Coordination across task events.
= Interfaces between layers. = Example: Completion of all writes at a
time step.

= Huge area of R&D for many years.

Key messages:

= HPC App architectures are changing, adding further demands and
opportunities for big data, big compute co-design efforts.

= Need to know HPC app trends to get combined big data, big compute right.

- ___
17

Execution Policy for Task Parallelism rhh)

= TaskManager< ExecSpace > execution policy

= Policy object shared by potentially concurrent tasks
TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm, task_functor_a); // single-thread task
Future<> fb = spawn(tm , task_functor_b);

= Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N), functor _c);
Future<value_type> fd = spawn_reduce(tm.team(N,M), functor_d);
wait(tm); // wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Managers
= Define a scope for a collection of potentially concurrent tasks

= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

Kokkos/Qthread LDRD

Sandia
Movement to Task-centric/Dataflow is Disruptive:) fesma
Use Clean-slate strategies

* Best path to task-centric/dataflow.

e Stand up new framework:

* Minimal, representative
functionality.

e Make it scale. New Minimal-feature App

» Distill minimal modeling
Current Full-featured A - “Clean slate” development.

- Classic parallel app design.

capabilities needed

* Mine functionality from previous
torepresentdata = - New parallel app design.

app. Full modeling capabilities. . . —
PP ; - Scalable on jassFi’c systems depr;‘::i’:rr:‘csn;airt]:rns e e icanatlles
* May need to refactor a bit. : ‘ - Scalable on future systems.
¢ May want to refactor |
substantially. Utilize new design,
* Historical note: Refactor and s'z;f:;r,‘,';
. migrate modeling :
* This was the successful approach capabilities into l
in 1990s migration from vector new framework.
multiprocessors (Cray) to Future Full-featured App
distributed memory clusters. “Clean Slate” App - New parallel app design.
* In-place migration approach . . - Full modeling abilities.
provided early distributed Migration Strategy - Scalable on future systems.

memory functionality. Failed
long-term scalability needs.

Phased Migration to Task-centric/
Dataflow

_ Inter-node/inter-device (distributed)
* All'Apps Looking for new Node-level parallelism and resource management
programming environments. network of
* Exploring standards, emerging: computational
« OpenMP, pthreads. nodes .
* OpenMP 4, OpenACC. Node-local control flow (serial)

* Exploring non-standard:
* HPX (Parallex).

* Legion.
° Brute fqrce: computational Intra-node (manycore) parallelism
* Uintah framework. node with and resource management
e Strategy: manycore CPUs
* Phase 1: On-node. and / or 1
. . GPGPU - —
Phase 2: Inter-node. Stateless, vectorizable, efficient

computational kernels
run on each core

Sandia
m National

Laboratories

Communicating
Sequential
Processes

Buniojoejay |9|leied g eseyd >

Threaded Processes

Stateless kernels

Buniojoejey |9|eled | 8seyd >

20

Task-centric/dataflow & Trilinos

= Kokkos:
= Task launch/futures.
= Provided for Trilinos users (or independently).
= Used by Trilinos itself.
= Thread-safe methods:
= Class methods, e.g., matrix fill, must be thread-safe.

Task A and B should be able to call matrix insertion at the same time.

= BUT: Using Kokkos directly for these operations is even better.

Then Tpetra must accept Kokkos arrays for it object pieces.

= Solvers must be threaded:

= |f application is using MPI+X, we must use MPI+X.
Same MPI ranks. Same definition of X.

= Must perform efficiently with MPI+X.

Sandia
National
Laboratories

Summary: Task-centric app design T ..

Scalable application design will move to a task-centric architecture:
= Provides a sequential view for domain scientists.
Looks a lot like MPI programming.
Only added requirements: Consumer/producer dependencies.
= Support vectorization/SIMT within a task.

= Supports many (all, really) threading environments.
= Permits continued use of Fortran.

= Provides a resilience-capability architecture.
Challenges to developing task-centric apps:

= Much more complicated MPI node-level interactions:

= OS/RT support for task-DAGS:

What are the Apps responsibility? How can OS/RT assist?
Concurrent execution is essential for scalability.

— Must be reading/writing from memory, computing simultaneously.

