Abstract

Epetra is a package of classes for the construction and use of serial and distributed parallel linear algebra objects [1]. It is one of the base packages in Trilinos [2]. Many Trilinos solver packages can use Epetra object to provide basic linear algebra computations. In these cases, the performance of the solver is often determined primarily by the performance of the kernels in Epetra. For this reason, it is often advantageous to make sure that Epetra kernels are performing optimally. This document describes how to get the best performance from Epetra kernels. The ideas presented here can make a significant difference in the performance of Epetra, sometimes a dramatic difference.
Acknowledgements: The author would like to thank the ASC and LDRD programs that have funded this work.
Table of Contents

1. Introduction ... 6
 1.1 Practice Categories .. 6
 1.2 Epetra Computational Classes ... 6
2. 3rd Party Libraries: BLAS and LAPACK ... 7
3. Epetra_MultiVector Data Layout .. 8
4. Epetra_CrsGraph Construction .. 8
5. Epetra_CrsMatrix Construction ... 10
6. Selecting the Right Sparse Matrix Class ... 11
7. Parallel Data Redistribution ... 13
8. General Practices ... 13
References .. 14
1. Introduction

This document describes issues for the Epetra computational classes that have an impact on performance. We present the topics class by class and indicate via the symbols presented in Section 1.1 the typical impact of each recommended practice.

1.1 Practice Categories

Each practice falls into one of three categories:

- **Very Strongly Recommended** - Practices necessary for Epetra to perform well.
- **Strongly Recommended** - Practices that are definitely a good thing or that have proved to be valuable.
- **Recommended** - Practices that are probably a good idea.

1.2 Epetra Computational Classes

Epetra contains a base class called Epetra_CompObject. This is a small class, but the classes that derive from it are exactly those which are the focus of this guide.

![Epetra Computational Classes Diagram]

Figure 1: Epetra Computational Classes
2. 3rd Party Libraries: BLAS and LAPACK

The Basic Linear Algebra Subprograms (BLAS) [3, 4, 5] provide a *de facto* standard interface for a variety of common dense linear algebra kernels such as vector updates and dot products, matrix-vector multiplication and matrix-matrix multiplication. LAPACK [6] provides a very large collection of linear equation solvers, eigenvalue/eigenvector solvers and much more, and is built to get its performance from the BLAS. A number of high-performance implementation of the BLAS exist. In fact, every major computer platform has at least one high-performance BLAS implementation. These high-performance BLAS kernels can provide a speed-up of a factor of ten or more for some important operations. In particular, Level-2 and Level-3 BLAS [4, 5] can be much faster. Two versions that are commonly used are ATLAS [7] and the GOTO [8] BLAS.

A number of Epetra classes use BLAS and LAPACK to perform key calculations. Figure 2 shows the Epetra classes that depend on BLAS via the Epetra_BLAS class. Epetra_BLAS is a simple wrapper class that provides portable interfaces to the BLAS Fortran interfaces. It is convenient to use because calling FORTRAN from C++ varies from platform to platform, and Epetra_BLAS handles the details of this issue.

![Figure 2: Epetra classes affected by BLAS performance](image)

- **2.1 Link to high-performance BLAS for Epetra_MultiVector, Epetra_VbrMatrix and Epetra_SerialDense performance:** Programs using Epetra should link to a high-performance BLAS library if
 - Epetra_MultiVector objects are used for block vector updates and block dot products (via the Multiply() method in the Epetra_MultiVector class) or
 - Epetra_VbrMatrix objects are being used. These matrix objects rely on BLAS kernels for performing matrix-vector and matrix-multivector multiplication.
Any of the Epetra_SerialDense classes are used. High-performance BLAS are critical to the performance of these classes.

3. Epetra_MultiVector Data Layout

An Epetra_MultiVector object is a collection of dense vectors. Each vector in a multivector is a contiguous array of double-precision numbers. Generally these arrays are managed by the Epetra_MultiVector object via an array of pointers. However, whenever possible, Epetra_MultiVectors are created such that the arrays of double-precision numbers are contiguous, such that the last element of one array is next to the first element of the next array. Such an arrangement of the arrays is referred to as *strided* because the distance from the i^{th} element of one array to the i^{th} element of the next array is determined by a fixed length. This type of storage association is commonly used because it is exactly how FORTRAN stores two-dimensional arrays. As a result, BLAS kernels assume this type of layout for matrices. Additionally, there is an essential performance advantage when performing matrix computations using strided arrays.

3.1 Create Epetra_MultiVector objects with strided storage of vectors: Epetra kernels will tend to perform much better if the underlying vectors have a strided storage associated. Although Epetra_MultiVectors support non-strided storage, we recommend it be avoided when possible. In particular, use strided storage if:

- Epetra_MultiVector objects are used for block vector updates and block dot products (via the Multiply() method in the Epetra_MultiVector class) or
- Epetra_MultiVectors are being used with Epetra_CrsMatrix or Epetra_VbrMatrix object for sparse matrix-vector multiplication or sparse triangular solves. In these instances, the performance of kernels can be up to twice as fast if the multivector has strided storage.

4. Epetra_CrsGraph Construction

An Epetra_CrsGraph object contains the structural information (the non-zero pattern) for Epetra_CrsMatrix and Epetra_VbrMatrix objects. An Epetra_CrsGraph can be constructed explicitly prior to constructing a matrix, and then passed in to the matrix constructor. Alternatively, if a matrix is constructed without passing in an existing Epetra_CrsGraph, the Epetra_CrsGraph will be constructed “on-the-fly”.

Epetra_CrsGraph objects are constructed in a three-step process:

1. Instantiate the Epetra_CrsGraph object.
2. Insert graph indices.
3. Call FillComplete() to process the graph data for efficient computation and communication.

Step 1 involves a single call to the constructor and Step 3 to a FillComplete() method. However, Step 2 can be accomplished in a number of ways. Indices can be inserted row-by-row, index-by-index or any combination of these two approaches. Indices can be inserted redundantly if the user does not want to track which indices are already in the graph and indices can be removed. Although this flexibility is convenient, especially in prototyping stages of development, it does introduce overhead in memory and time costs. Therefore, Epetra_CrsGraph objects can be constructed in more restrictive modes that require more information and attention from the user, but in return the user can significantly reduce memory and time costs.

4.1 Construct Epetra_CrsGraph objects first: When constructing multiple Epetra_CrsMatrix or Epetra_VbrMatrix objects, much of the overhead in sparse matrix construction is related solely to the graph structure of the matrix. By pre-constructing the Epetra_CrsGraph object, this expense is incurred only once and then amortized over multiple matrix constructions. Note: Even when constructing a single matrix, it is often the case that matrix construction is done within a nonlinear iteration or a time-stepping iteration. In both of these cases, it is best to construct the Epetra_CrsGraph object one time and then reuse it.

4.2 When constructing Epetra_CrsGraph objects, carefully manage the nonzero profile and set StaticProfile to ‘true’: Although it is very convenient to use the flexible insertion capabilities of Epetra_CrsGraph, the performance and memory cost can be substantial. StaticProfile is an optional argument to the Epetra_CrsGraph constructors that forces the constructor to pre-allocate all storage for the graph, using the argument NumIndicesPerRow as a strict upper limit on the number of indices that will be inserted.

4.3 After calling FillComplete(), call OptimizeStorage(): (Note: With Trilinos 8.0 and later, OptimizeStorage() is called automatically.) The OptimizeStorage() method frees memory that is used only when submitting data to the object. Also, the storage that remains is packed for better cache memory performance due to better spatial locality. If StaticProfile is true, the packing of data is fast and cheap, if needed at all\(^1\). If StaticProfile is false, then the graph data is not contiguously stored, so we must allocate contiguous space for all entries, copy data from the existing arrays, and then delete the old arrays. This can be a substantial overhead in memory costs and could even double the high-water memory mark. However, the performance improvement for matrix operations can be 20% to a full doubling of performance.

4.4 Use Epetra_FECErsMatrix if you have many repeated indices. Then extract the associated Epetra_CrsGraph for subsequent use: Although there is no Epetra_FECErsGraph class (something that we may introduce in the future), it is typically best to use the Epetra_FECErsMatrix class to construct matrices when you have many repeated indices. This is typically the case when forming global stiffness matrices from local element

\(^1\) If the number of entries in the matrix exactly match the profile used to create the matrix, packing is does not need to move any data, but it is not a big performance hit if the profile is somewhat larger.
stiffness matrices in a finite element assembly loop. **Note:** Even though there is no Epetra_FECrsGraph class, once an Epetra_FECrsMatrix has been constructed, call it myFEMatrix, there is an Epetra_CrsGraph that can be accessed via myFEMatrix.Graph() and used to construct further matrices that have the same pattern as myFEMatrix.

4.5 When inserting indices into Epetra_CrsGraph objects, avoid large numbers of repeated indices:

To reduce time costs, indices that are inserted into a row are not checked for redundancy at the time they are inserted. Instead, when FillComplete() is called, indices are sorted and then redundant indices are removed. Because of this approach, repeated indices increase the memory used by a given row, at least until FillComplete() is called.

4.6 Submit large numbers of graph indices at once:

When inserting indices, submit many entries at once if possible. Ideally, it is best to submit all indices for a given row at once.

5. Epetra_CrsMatrix Construction

An Epetra_CrsMatrix object stores a sparse matrix in a row-biased data structure (although column support is implicitly available because transpose operations are also supported). An Epetra_CrsMatrix can be constructed using a previously constructed Epetra_CrsGraph object or from scratch, in which case the graph will be constructed “on the fly”. Matrix entries can be inserted, summed-into or replaced one-at-a-time or as row fragments.

Much like Epetra_CrsGraph objects, Epetra_CrsMatrix objects are constructed in a three-step process:

1. Instantiate the Epetra_CrsMatrix object.
2. Submit matrix values and corresponding column indices via:
 a. Insertion: New values that have no entry.
 b. Sum-into: Values that already exist.
 c. Replacement: Replace an existing value with a new one.
3. Call FillComplete() to process the matrix for efficient computation and communication.

Step 1 involves a single call to the constructor and Step 3 to a FillComplete() method. However, Step 2 can be accomplished in a number of ways. Matrix entries can be submitted row-by-row, index-by-index or any combination of these two approaches. Although this flexibility is convenient, especially in prototyping stages of development, it does introduce overhead in memory and time costs. Therefore, Epetra_CrsMatrix objects can be constructed in more restrictive modes that require more information and attention from the user, but in return the user can significantly reduce memory and time costs.

5.1 When constructing Epetra_CrsMatrix objects, carefully manage the nonzero profile and set StaticProfile to ‘true’:

As is true with Epetra_CrsGraph objects, it is very
convenient to use the flexible insertion capabilities of Epetra_CrsMatrix. However, the performance and memory cost of this flexibility can be substantial. StaticProfile is an optional argument to the Epetra_CrsMatrix constructors that forces the constructor to pre-allocate all storage for the matrix entries (and the Epetra_CrsGraph, if it is being constructed on the fly), using the argument NumIndicesPerRow as a strict upper limit on the number of matrix entries that will be inserted.

Note: StaticProfile is false by default.

5.2 After calling FillComplete(), call OptimizeStorage() : (Note: With Trilinos 8.0 and later, OptimizeStorage() is called automatically.) As is true with Epetra_CrsGraph objects, the OptimizeStorage() method frees memory that is used only when submitting data to the object. Also, the storage that remains is packed for better cache memory performance due to better spatial locality. If StaticProfile is true, the packing of data is fast and cheap, if needed at all. If StaticProfile is false, then the matrix data is not contiguously stored, so we must allocate contiguous space for all entries, copy data from the existing arrays, and then delete the old arrays. This can be a substantial overhead in memory costs and could even double the high-water memory mark. However, the performance improvement for matrix operations can be 20% to a full doubling of performance.

5.3 Submit large numbers of matrix entries at once: When submitting entries via insertion, sum-into or replacement, submit many entries at once if possible. Ideally, it is best to submit all entries for a given row at once.

Also see Practices: 3.1, 4.1, and 4.3.

6. Selecting the Right Sparse Matrix Class

Epetra provides a base matrix class called Epetra_RowMatrix. Epetra_RowMatrix is a pure virtual class that provides an interface to sparse matrices, allowing access to matrix coefficients, matrix distribution information and methods to compute matrix multiplication and local triangular solves. Epetra provide four classes that are implementations of Epetra_RowMatrix. Specifically:

1. **Epetra_CrsMatrix**: Compressed Row Storage scalar entry matrix.
2. **Epetra_FECrsMatrix**: Finite Element Compressed Row Storage matrix.
3. **Epetra_VbrMatrix**: Variable Block Row block entry matrix.
4. **Epetra_FEVbrMatrix**: Finite Element Variable Block Row matrix.

Note: Epetra_JadOperator does not implement Epetra_RowMatrix, but is worth mentioning for users of vector processors. This class is a first version to support vectorization of sparse matrix-vector multiplication.

In addition, there are numerous other implementation of Epetra_RowMatrix provided in other packages. For example:

1. **Epetra_MsrMatrix**: This class is provided within AztecOO. The constructor for Epetra_MsrMatrix takes a single argument, namely an existing AZ_DMSR matrix as

2 If the number of entries in the matrix exactly match the profile used to create the matrix, packing is does not need to move any data, but it is not a big performance hit if the profile is somewhat larger.
defined in the Aztec 2.1 User Guide [9]. Epetra_MsrMatrix does not make a copy of the Aztec matrix. Instead it makes the Aztec matrix act like an Epetra_RowMatrix object.

2. Ifpack Filters: Ifpack uses the Epetra_RowMatrix interface to provide modified views of existing Epetra_RowMatrix objects. For example, Ifpack_DropFilter creates a new Epetra_RowMatrix from an existing one by dropping all matrix values below a certain tolerance.

6.1 Use Epetra_FEVbrMatrix to construct a matrix with dense block entries and repeated summations into block entries: Epetra_FEVbrMatrix is designed to handle problems such as finite element, finite volume or finite difference problems where multiple degrees of freedom are being tracked at a single mesh point, and the matrix block entries are being summed into the global stiffness matrix one finite element or control volume cell at a time. In these situations, one can construct an Epetra_CrsGraph object that encodes the mesh connectivity, using Eptra_BlockMap objects to describe how many degrees of freedom are being tracked at each mesh node. **Note:** Epetra_FEVbrMatrix is derived from Epetra_VbrMatrix. At the end of the construction phase, the Epetra_FEVbrMatrix object is a Epetra_VbrMatrix object.

6.2 Use Epetra_VbrMatrix to construct a matrix with dense block entries and few repeated submissions: Epetra_VbrMatrix is designed to handle problems such as finite element, finite volume or finite difference problems where multiple degrees of freedom are being tracked at a single mesh point, but matrix block entries are typically not repeated summed into the global stiffness matrix one element or control volume cell at a time. In these situations, one can construct an Epetra_CrsGraph object that encodes the mesh connectivity, using Eptra_BlockMap objects to describe how many degrees of freedom are being tracked at each mesh node. **Note:** Presently the Epetra_VbrMatrix class does not have optimal performance for small block entry matrices. Block entries should be of size 4 or larger before Vbr formats are preferable to Crs formats.

6.3 Use Epetra_FECrsMatrix to construct a matrix with scalar entries and repeated summations into entries: Epetra_FECrsMatrix is designed to handle problems such as finite element, finite volume or finite difference problems where a single degree of freedom is being tracked at a single mesh point, and the matrix entries are being summed into the global stiffness matrix one finite element or control volume cell at a time.

6.4 Use Epetra_CrsMatrix in all other cases: Epetra_CrsMatrix is the simplest and most natural matrix data structure for people who are used to thinking about sparse matrices. Unless you have one of the above three situations, you should use Epetra_CrsMatrix.

6.5 Use Epetra_RowMatrix to access matrix entries: If you are writing code to use an existing Epetra sparse matrix object, use the Epetra_RowMatrix interface to access the matrix. This will provide you compatibility with all of Epetra’s sparse matrix classes, and allow users of your code to provide their own custom implementation of Epetra_RowMatrix if needed.
7. Parallel Data Redistribution

Epetra has extensive capabilities for redistributing already-distributed objects. Good load balancing and good scalability depend on a balanced work and data load across processors. EpetraExt provides an interface to the Zoltan load balancing library. Zoltan can be used by EpetraExt to compute a redistribution of matrices, vectors and multivectors that has better load balance.

7.1 Use EpetraExt to balance load: Although an advanced feature, any serious use of Epetra for scalable performance must ensure that work and data are balanced across the parallel machine. EpetraExt provides an interface to the Zoltan library that can greatly improve the load balance for typical sparse matrix computations.

7.2 Use Epetra_OffsetIndex to improve performance of multiple redistributions: Often the data distribution that is optimal for constructing sparse matrices is not optimal for solving the related system of equations. As a result, the matrix will be constructed in one distribution, and then redistributed for the solve. Epetra_OffsetIndex precomputes the offsets for the redistribution pattern, making repeated redistributions cheaper.

8. General Practices

8.1 Check method return codes: Almost all methods of Epetra classes provide an integer return argument. This argument is set to zero if no errors or warning occurred. However, a number of performance-sensitive methods will communicate potential performance problems by returning a positive error code. For example, if the matrix insertion routine must re-allocate memory because the allocated row storage is too small, a return code of 1 is set. Since memory reallocation can be expensive, this information can be an indication that the user should increase the nonzero profile values (NumEntriesPerRow).

8.2 Compile Epetra with aggressive optimization: Epetra performance can benefit greatly from aggressive compiler optimization settings. In particular, aggressive optimization for FORTRAN can be especially important. Configuring Epetra (or Epetra as part of Trilinos) with the following compiler flags works well on 32-bit PC platforms with the GCC compilers:

```bash
../configure CXXFLAGS="-O3" CFLAGS="-O3" \ FFLAGS="-O5 -funroll-all-loops -malign-double"
```
9. Extended Capabilities

Epetera provides several general-purpose data structures for sparse computations. However, there are other sources for high performance kernels and we provide access to several other libraries. Furthermore, it is often the case that—for users who know their data—special-purpose kernels can provide the best performance.

Use OSKI if it performs well for your problems: Trilinos provides an interface to OSKI [10] the sparse kernel package from UC Berkeley. Information on its performance characteristics is available [11]. The primary class of interest is Epetra_OskiMatrix.

Use PETSc AIJ Matrix wrappers if already using PETSc: Current PETSc [12] users who have already invested in PETSc data structures can use PETSc matrices and vectors with Trilinos solvers and preconditioners using the Epetra_PETScAIJMatrix class, which wraps the PETSc matrix and uses it to satisfy the Epetra_RowMatrix interface. Only minimal extra storage is required. This class is part of EpetraExt.

Write your own custom matrix class for optimal storage and performance: Although any of the above approaches can be a good answer for good sparse matrix kernel performance, it is almost always possible for sophisticated users to provide their own implementation of Epetra_RowMatrix that specifically addresses their problem and performs better than a generic approach. Trilinos is different than all other library packages that we know about in that all of our solvers and preconditioners use the Epetra_RowMatrix interface to access data. Because of this, even if you use your own matrix data structures, you can still use all Trilinos preconditioners and solvers since they are not tied to a data structure, but instead access data through an interface.
References

