CVFEM and Climate Visualization Applications Using Intrepid

Kara Peterson

Sandia National Labs
Numerical Analysis and Applications

November 2, 2011
Outline

1. Intrepid Functionality
2. Control Volume Finite Element Method
3. Parallel Analysis and Visualization for Ultra-Large Climate Data Sets
Intrepid Functionality

- Cell geometry
 - maps to and from reference cells
 - Jacobians
 - surface normals and line tangents

- Integration on cells
 - cubature points and weights
 - up to high degree

- Discrete spaces
 - basis functions evaluated at points in cell
 - differential operators

- Discrete operators and functionals

\[
K_{i,j}^\kappa = \int_\kappa \mathcal{L}\phi_i(x)\mathcal{L}\phi_j(x)dx
\]

\[
\approx \sum_{p=1}^{N} \Phi^* (\mathcal{L}\hat{\phi}_i(\hat{x}_p))\Phi^* (\mathcal{L}\hat{\phi}_j(\hat{x}_p))J(\hat{x}_p)\omega_p
\]
Nonlinear coupled drift-diffusion equations for semi-conductors

\[\nabla \cdot (\lambda^2 \mathbf{E}) - (p - n + C) = 0 \quad \text{and} \quad \mathbf{E} = -\nabla \psi \quad \text{in} \ \Omega \]

\[\frac{\partial n}{\partial t} - \nabla \cdot \mathbf{J}_n + R(\psi, n, p) = 0 \quad \text{and} \quad \mathbf{J}_n = \mu_n n \mathbf{E} + D_n \nabla n \quad \text{in} \ \Omega \]

\[\frac{\partial p}{\partial t} - \nabla \cdot \mathbf{J}_p + R(\psi, n, p) = 0 \quad \text{and} \quad \mathbf{J}_p = \mu_p p \mathbf{E} + D_p \nabla p \quad \text{in} \ \Omega \]

\(E \) - electric field
\(\psi \) - electric potential
\(n \) - electron concentration
\(p \) - hole concentration
Drift-Diffusion Equations

Nonlinear coupled drift-diffusion equations for semi-conductors

\[\nabla \cdot (\lambda^2 E) - (p - n + C) = 0 \quad \text{and} \quad E = -\nabla \psi \quad \text{in} \ \Omega \]

\[\frac{\partial n}{\partial t} - \nabla \cdot J_n + R(\psi, n, p) = 0 \quad \text{and} \quad J_n = \mu_n n E + D_n \nabla n \quad \text{in} \ \Omega \]

\[\frac{\partial p}{\partial t} - \nabla \cdot J_p + R(\psi, n, p) = 0 \quad \text{and} \quad J_p = \mu_p p E + D_p \nabla p \quad \text{in} \ \Omega \]

\[E - \text{electric field} \]
\[\psi - \text{electric potential} \]
\[n - \text{electron concentration} \]
\[p - \text{hole concentration} \]
Integrate over control volume \((C_i)\) to get weak form

\[
\int_{C_i} \frac{\partial n}{\partial t} dV - \int_{\partial C_i} \mathbf{J} \cdot \mathbf{n} dS = \int_{C_i} R(\psi, n, p) dV + \int_{\partial C_i^N} h dS
\]

Express in terms of nodal coefficients \((n_j)\)

\[
\sum_{j \in \Omega \cup \Gamma_N} \frac{\partial n_j(t)}{\partial t} \int_{C_i} N_j dV - \int_{\partial C_i} \mathbf{J}_h \cdot \mathbf{n} dS = \int_{C_i} R(\psi, n_h, p) dV + \int_{\partial C_i^N} h dS
\]
Control Volume Finite Element Method
with Scharfetter-Gummel Upwinding

Scharfetter-Gummel Upwinding

Assume \(\psi \) varies linearly along \(e_{ij} \)

\[E_{ij} = - \frac{(\psi_j - \psi_i)}{|e_{ij}|} \quad \psi_i = \psi(v_i); \quad \psi_j = \psi(v_j) \]

Solve simplified ODE on edge to get

\[J_{ij} = \frac{D_n}{|e_{ij}|} \left[n_j B(-2a_{ij}) - n_i B(2a_{ij}) \right] \]

where \(a_{ij} = - \frac{(\psi_j - \psi_i)}{2\beta} \) and \(B(x) = \frac{x}{\exp(x)-1} \)

Approximation of Integral over \(\partial C_{ij} \)

\[\int_{\partial C_{ij}} J \cdot \vec{n} dS \approx \frac{D_n}{|e_{ij}|} \left[n_j B(-2a_{ij}) - n_i B(2a_{ij}) \right] \left(|\partial C_{ij}^s| + |\partial C_{ij}^t| \right) \]

Control Volume Finite Element Method
with Multi-Dimensional Scharfetter-Gummel Upwinding

Multi-Dimensional Scharfetter-Gummel Upwinding

\[\hat{J}_h = \sum_{e_{kl} \in E(K_s)} \alpha_{kl} \mathbf{W}_{kl}(x) \]
\[\alpha_{kl} = \frac{D_n}{|e_{kl}|} \left[n_l B(-2a_{kl}) - n_k B(2a_{kl}) \right] \]

CVFEM with Multi-Dimensional Scharfetter-Gummel Upwinding

\[\sum_{j \in \partial \Omega \cup \Gamma_N} \frac{\partial n_j(t)}{\partial t} \int_{C_i} N_j dV - \]
\[\sum_{e_{kl} \in E(\Omega)} \left[\frac{D_n}{|e_{kl}|} \left[n_l B(-2a_{kl}) - n_k B(2a_{kl}) \right] \int_{\partial C_i} \mathbf{W}_{kl} \cdot \mathbf{n} dS \right] \]
\[= \int_{C_i} R(\psi, n_h, p) dV + \int_{\partial C_i^N} h dS \]

CVFEM with SG Upwinding

Patch Test Results

CVFEM with SG Upwinding

Pseudo-1D Example Results

CVFEM M-D SG

CVFEM SUPG

FEM SUPG

CVFEM with SG Upwinding

N-Channel MOSFET

Scaled Continuity Equation

$$\nabla \cdot J_n = 0, \quad J_n = \bar{n} \mu_n \nabla \bar{\psi} - \bar{D}_n \nabla \bar{n}$$

Figure provided by Suzey Gao, SNL

Electron Density from CVFEM Using Intrepid

Figure provided by Suzey Gao, SNL
Parvis
Parallel Analysis Tools and New Visualization Techniques for Ultra-Large Climate Data Sets

Motivation
Climate models produce huge amounts of data and efficient, parallel algorithms for processing this data are required.

Approach
- Use NCAR Command Language (NCL) as the framework for the new capability
- Replace functions inside of NCL with parallel equivalents to speed up calculations
- Create Parallel Climate Analysis Library (ParCAL)
 - MOAB for mesh management
 - Intrepid for interpolation, cell operations
 - PNetcdf for parallel I/O
- Joint work with ANL(lead), NCAR, PNNL, UC-Davis
Given zonal and meridional velocity components \((u, v)\) and grid in longitude and latitude coordinates \((\lambda, \phi)\)

1. Compute gradients of basis functions on reference element

\[\hat{\nabla} \hat{\phi}_i (\xi, \eta) \]

2. Map basis derivatives to element in \((\lambda, \phi)\) space and compute approximate \((u, v)\) gradients

\[\nabla u = \sum_i u_i DF^{-T} \hat{\nabla} \phi_i, \quad \nabla v = \sum_i v_i DF^{-T} \hat{\nabla} \phi_i, \]

3. Combine partial derivatives and metric terms for vorticity in physical space

\[\text{vorticity} = \frac{1}{r \cos \phi} \frac{\partial v}{\partial \lambda} - \frac{1}{r} \frac{\partial u}{\partial \phi} + \frac{u}{r} \tan \phi \]
Calculated locally on each element
- Easily parallelizable
- Global data not required

Calculated with spherical harmonics
- Requires global data

\[
vorticity = \frac{1}{r \cos \phi} \frac{\partial v}{\partial \lambda} - \frac{1}{r} \frac{\partial u}{\partial \phi} + \frac{u}{r} \tan \phi
\]
Calculating Divergence of a Vector Field with Intrepid

- Calculated locally on each element
- Easily parallelizable
- Global data not required

\[
\text{divergence} = \frac{1}{r \cos \phi} \frac{\partial u}{\partial \lambda} + \frac{1}{r} \frac{\partial v}{\partial \phi} - \frac{v}{r} \tan \phi
\]
Other Grid Operations Using Intrepid

- Bilinear interpolation from one grid to another
- Velocity potential (χ) or stream function (ψ)

\[\nabla^2 \chi = \text{divergence} \]

\[\nabla^2 \psi = \text{vorticity} \]

Source Mesh

Target Mesh

Velocity Potential via Spherical Harmonics

www.ncl.ucar.edu
Conclusion

- Intrepid can be used for more than just standard finite element assembly

 - Multidimensional Edge Element
 - Scharfetter-Gummel upwinding
 - Calculating vorticity and divergence for climate data analysis
 - Interpolating values from one grid to another