Next-generation iterative solvers for next-generation computing: Anasazi and Belos

Mark Hoemmen mhoemme@sandia.gov
Sandia National Laboratories
02 Nov 2011
Who am I?

- Postdoc at Sandia National Laboratories
 - Graduated UC Berkeley March 2010
- Research: “Scalable algorithms”
 - Interactions between algorithms and computer architectures
- Trilinos developer since Spring 2010
 - New, fast, accurate block orthogonalization (TSQR)
 - New communication-avoiding & fault-tolerant solvers
 - Prototyped & running, not in Belos yet
 - Sparse matrix I/O, utilities, bug fixes, and consulting
- Trilinos packages I’ve worked on:
 - Anasazi, Belos, Kokkos, Teuchos, Tpetra
List of contributors

- Anasazi and Belos share many contributors
 - Anasazi came first
 - Belos shared design features & motivations

- Common lead:
 - Heidi Thornquist

- Contributors:
 - Chris Baker, David Day, Mike Heroux, Ulrich Hetmaniuk, Sarah Knepper, Rich Lehoucq, Mark Hoemmen, Vicki Howle, Mike Parks, Kirk Soodhalter, …
Outline

- Motivations for Anasazi & Belos
 - Why are iterative solvers still hard?
 - Why block solvers?
 - Why decouple solvers from the linear algebra library?
 - Why are they templated on the Scalar type?

- Application highlights

- New solvers & features (since last TUG)

- Research & development efforts

- Future (ongoing) work
Why are $Ax=b$ & $Ax=\Lambda x$ still hard?

- Often $\geq 80\%$ runtime
- Dominate runtime of higher-level algorithms
 - Nonlinear solves, optimization, statistics, …
- Harder to optimize
 - Bandwidth-bound
 - More communication
- Why we care about…
 - New algorithms & kernels
 - Software flexibility to develop & deploy them
Why block solvers?

- **“Block” solvers:**
 - Resolve clusters of eigenvalues
 - Solve several right-hand sides at once

- **Architecture-aware (= “avoid data movement”)**
 - “Flops are cheap, bandwidth is money, latency is expensive”
 - Kathy Yelick (LBNL & UC Berkeley)
 - Standard Krylov kernels dominated by data movement costs
 - Favor “block” kernels that amortize costs over many vectors

- **Application-driven (= “rarely just one linear system”)**
 - Needed to resolve tightly clustered eigenvalues
 - Block eigensolver → block linear solver (shift & invert)
 - Parameter studies, robustness, uncertainty, …

- Lucky convergence of architecture and application!
Why decouple solvers from the linear algebra library (LAL)?

- “Any problem in computer science can be solved with another level of indirection.”
 - Butler Lampson, 1993 Turing Award lecture
- Rapid evolution of computer architectures
 - LAL architects & performance tuners must track them
 - Numerical algorithm developers != performance tuners
 - Free the former to focus on algorithmic evolution
- Data placement crucial for performance
 - LAL must be free to store data how it likes
 - Solvers only interact with data through a few kernels
Anasazi & Belos decoupled from linear algebra library

- Previous packages (AztecOO, ARPACK) were not
 - “Reverse communication” interface, which means here:
 - Decoupled from operator representation
 - Still constrains vector representation

- Anasazi and Belos only constrain interface
 - Compile-time polymorphic “traits” interface
 - Interface cost is at most one function call
 - Solvers work with any linear algebra library
 - Epetra, Tpetra, Thyra, …, yours (wrapped)
Why are Anasazi & Belos templated on the Scalar type?

- **Arbitrary-precision algorithms**
 - Some problems need extra precision
 - We can do CG & GMRES with
 - double-double (128 bits), quad-double (256 bits), …
 - Wish list: fully templated LAPACK

- **Mixed-precision algorithms**
 - Use the least precision necessary (e.g., float vs. double)
 - Enable new algorithms that
 - Use lower precision most of the time
 - Use higher precision selectively
 - Save bandwidth & memory

- **Avoid code duplication**
Application highlights
Anasazi application highlights

- **Themis**: Large data set analysis tool
 - Canonical Correlation Analysis
 - Computed by `eigen{value + vector} solve(s)`
 - Anasazi provides efficient parallel implementation

- **Schrödinger's equation solver**
 - Part of QCAD (Quantum CAD) LDRD
 - Equations set up in Albany
 - Anasazi accessed through LOCA

- **Block Krylov-Schur with > 2^40 unknowns**
 - 1,728,684,249,600 (> 1 trillion!) unknowns
 - k-eigenvalue problem in Denovo (reactor design)
 - 200K cores of Jaguar
Belos application highlights

- GLIMMER Community Ice Sheet Model
 - Flexible GMRES inner-outer iteration, driven by NOX
 - Trilinos driven by Andy Salinger’s Piro package
 - Fortran 95 (they have custom Trilinos wrappers)
 - Provided feedback that helped us fix a performance bug
 - Teuchos::TimeMonitor::summarize()

- LifeV finite-element library
 - Fruitful collaboration with EPFL visitors

- Belos already being integrated into more codes
 - Epetra → Tpetra requires AztecOO → Belos
 - Expect heavier Belos use as Tpetra-based stack matures
New solvers and features
Block Recycling GMRES (Block GCRO-DR)

- Algorithm: Kirk Soodhalter (Temple U, Daniel Szyld)
- Belos implementation: Kirk S. and Mike Parks
- Reuse basis from previous solves to accelerate sequences of solves
- Example: Tramonto
 - Fluid density functional theory
 - Hard spheres w/ electrostatics and attractions
 - Newton iteration: 7 solves
- Savings:
 - 1 RHS: 60 matvecs (36%)
 - 3 RHS: 50 matvecs (40%)
LSQR: Least-squares solver (1 of 2)

- Algorithm:
 - C. C. Paige & M. A. Saunders (Stanford)

- Belos implementation:
 - Sarah Knepper (Emory, now Intel) and David Day

- LSQR solves
 - Nonsymmetric linear systems
 - Linear and damped least squares

- Algorithmic features
 - Detects incompatible $Ax=b$; returns least-squares solution
 - Tolerates singular matrix A; works with nonsquare A
 - Computes sparse SVD: sharp condition number bounds
 - Fixed memory footprint (but more matvecs than GMRES)
LSQR: Least-squares solver (2 of 2)

- Use case: Adaptive-precision solver
 - Mixed & arbitrary precision an important Belos motivation
 - Prefer single to double precision
 - Memory bandwidth and memory per node constrained on modern computers
 - But A may be singular in single, not in double
 - while (cond(A) > 1 / eps(precision)):
 - Increase precision
 - Solve again

- Software notes
 - Requires transpose: first Belos solver that does!
 - This helped us discover and fix Belos’ Epetra wrappers
MINRES: Linear solver

- Algorithm: Paige and Saunders
- Belos implementation: Nico Schlömer
 - With help from Heidi Thornquist and Mark Hoemmen
- Solves symmetric indefinite linear systems
 - Fixed memory footprint
- Result of Nico’s TUG 2010 presentation!
 - Nico: “You can see CG deflating the negative eigenvalues…”
 - me: [cringes visibly]
 - Inspired Nico to contribute MINRES implementation
Faster orthogonalizations, more easily available

- Tall Skinny QR (TSQR) orthogonalization method
 - 2008 UC Berkeley tech report, SC09, IPDPS 2011, …
 - $O(1)$ reductions, independent of number of vectors
- Now works with Tpetra on any CPU node
 - Kokkos Node = TPINode, TBBNode, SerialNode
 - Algorithm specialized for Kokkos node type
- Also works with Epetra, if Trilinos built with Tpetra
- In Belos: Available via OrthoManagerFactory
 - Decouples solvers from orthogonalization setup
 - Factory handles interpreting parameters
 - Sublist “Orthogonalization Parameters”
 - Available in GCRODR, soon in other GMRES variants
Research & development efforts
Communication-avoiding solvers

- “Communication” = data movement
 - Between levels of memory hierarchy (bandwidth)
 - Between parallel processors (latency)
 - Slow & getting slower exponentially relative to flops
- Standard Krylov methods are communication-bound
- “Communication-avoiding” (CA) solvers:
 - Use different kernels that communicate less
 - Details: Hoemmen 2010 (PhD thesis), …
- Trilinos prototype of CA-GMRES
 - Built on Tpetra and Belos; already getting speedups
 - ~ 3 weeks of work to deploy in Belos
- Long-term collaboration with UC Berkeley and others
 - Kernels and kernel optimizations
 - New CA algorithms & lower bounds theory
Fault-tolerant solvers

- Exascale systems will be less reliable
 - Including incorrect data and computations
 - Reliability has energy and performance cost
- Iterative solvers are...
 - Sensitive to unreliable data and computations
 - Faults may cause incorrect results *undetectably*
- “Selective reliability” enables new solvers
 - System exposes reliability tradeoffs
 - Algorithm identifies what *must* be reliable
 - This requires new iterative solver algorithms!
- Fruitful collaboration with systems researchers
 - Sandia’s “9 Lives” Group (Patrick Bridges, Kurt Ferreira)
Fault-Tolerant GMRES

- An inner-outer iteration
 - Based on Flexible GMRES
 - Inner solver “preconditions” outer solver
 - Inner solver runs unreliably
 - Outer solver runs reliably

- Advantages
 - Reuse any existing solver stack as “inner solver”
 - Most time spent in cheap unreliable mode
 - Faults only delay, don’t prevent convergence
 - Can exploit fault detection if available, but not necessary
Future (ongoing) work
Future (ongoing) work

- Refactor solvers’ interface to linear algebra?
 - Do Anasazi and Belos need fused computational kernels?

- Improve support for inner-outer iterations?

- Improve robustness to rounding-error effects of hybrid parallelism?
Fuse computational kernels?

- Anasazi & Belos currently assume separate kernels
 - One kernel = one linear algebra library routine call
- Examples of fused kernels:
 - \(w = A^*x, \alpha = \text{dot}(w,x) \)
 - \(w = A^*x, z = A^T * y \)
- Good or harmless for performance
 - Avoid overhead of starting & stopping tasks
 - Increase task duration \(\Rightarrow \) maximize data locality
 - May allow launching kernel(s) asynchronously
- How would this change solvers?
 - Solver code changes, but algorithms don’t (much)
 - Low-risk evaluation using Chris Baker’s Tpetra::RTI CG
Improve support for inner-outer iterations?

- Currently: Outer solver treats inner as black box
- Some algorithms want communication between inner and outer solves
 - Example: inexact Krylov (Szyld et al.)
 - Outer solver adjusts inner tolerance based on outer $\|r_k\|$
 - Example: Fault-Tolerant GMRES (Heroux, Hoemmen et al.)
 - Inner solve events may affect outer solve behavior
- Can we support this without rewriting solvers (much)?
Thread parallelism may not be deterministic
Parallel BLAS & LAPACK may give different results on different MPI processes
Anasazi & Belos expect same evaluation of projected (small dense) problem on different processes
“Continuous” perturbation affects discrete decisions
 - Count of eigenvalues in a cluster
 - Convergence criteria for linear solves
If some processes go on and others stop:
 - Crash or deadlock
To fix: No hard math, but redesign of all “parallel decisions” and continuous → discrete transitions
Summary

- Linear algebra is still hard

- Advantages of Anasazi & Belos
 - Block algorithms desired by applications & perform well
 - Solvers decoupled from matrix & vector storage layout
 - Mixed- & arbitrary-precision algorithms through templating
 - Can solve problems with > 2 billion unknowns

- Critical for manycore performance
 - Fully compatible with Tpetra & Epetra stacks
 - Simplifies Epetra → Tpetra transition

- Advanced new algorithms
Any questions?
Extra Slides
Design evolution (extra)

- Leave reduction results on the compute device?
 - Current interface returns scalar results from GPU to CPU
 - Instead, could leave results on GPU, fire kernels asynchr.
 - Carter Edwards’ Gram-Schmidt prototype (ValueView)
 - Solver code changes a LOT; algorithms may too
 - Can’t evaluate convergence tests on the GPU
 - Batch up several iterations
 - Not so effective with MPI and multiple GPUs
 - Must communicate the reduction results anyway
 - Can they go straight from the GPU to the network interface
Abstraction lets solvers track architecture evolution

- **LAL (not solvers) carries evolution burden**
 - Solver developers often not performance tuners
 - They can focus on algorithmic evolution

- **LAL (not solvers) controls all…**
 - Data placement
 - Needed for accelerator architectures (e.g., GPUs)
 - Performance critical on multicore CPUs
 - Intranode (thread) & internode (MPI) parallelization
 - Solver developers don’t need to write OpenMP, CUDA, …

- **Disadvantages**
 - LAL interface constrains cross-kernel optimizations