
Current and coming OSKI features

Mark Hoemmen
mhoemmen@cs.berkeley.edu

University of California Berkeley

November 4, 2009



Our goals

1. Introduce OSKI sparse matrix library

2. Show both current and proposed features

3. Solicit advice from users:
I Help us prioritize our work
I Help us choose interfaces that balance simplicity and cost
I Teach us about new kernels and optimization possibilities

4. Present current sparse kernels and algorithms research



Who am I?

I I work on communication-avoiding algorithms for sparse and
dense linear algebra

I I understand OSKI algorithms and optimizations, but

I Not (yet) an OSKI developer
I Will likely be more involved in the future
I I'm here representing OSKI

I Work funded by
I DOE, NSF, ACM/IEEE, Intel, Microsoft



What is OSKI?

Figure: Oski the Bear (UC Berkeley mascot)



What is OSKI?

I Optimized Sparse Kernel Interface

I �BLAS� for sparse matrix, dense vector ops

I Autotuning C library
I Automatically picks fast implementation
I Based on build-time and runtime search
I Accepts, but does not require, user hints

I Targets cache-based superscalar platforms
I Shared-memory parallel coming soon!
I Ongoing research into other platforms



OSKI collaborators

I Project leaders
I James Demmel, Kathy Yelick

I Current developers
I Ben Carpenter, Erin Carson, Armando Fox, Rich Vuduc

I Contributed OSKI code
I Jen Hsu, Shoaib Kamil, Ben Lee, Rajesh Nishtala

I Optimizations and algorithms research
I Various members of UC Berkeley Benchmarking and

Optimization (BeBOP) group
I For details: bebop.cs.berkeley.edu

bebop.cs.berkeley.edu


Kernels currently supported

I What's a kernel?
I NOT: integral equations, operating systems
I Computational building block that. . .
I . . . exposes potential optimizations

I �Classic� kernels
I Sparse matrix-vector multiply (SpMV)
I Sparse triangular solve (SpTS)

I �Exotic� kernels that exploit locality
I Matrix and its transpose: (x , y) 7→ (Ax ,AT y)
I Matrix times its transpose: x 7→ (Ax ,ATAx)
I Power of a matrix: x 7→ Akx , k ∈ {2, 3, . . . }



How much faster?

I Sequential:
I SpMV: 4×
I SpTS: 1.8×
I x 7→ ATAx : 4.2×

I Parallel:
I SpMV: 11.3× on 8 cores

I How? Autotuning

1. Humans develop algorithms and optimizations
2. Humans write code generation scripts (in any scripting

language)
3. Scripts generate code variants in target language (C)
4. O�ine + runtime search (over code variants and parameters)



How does OSKI work?

I O�ine phase (library build time)

1. Human-written scripts generate code variants
2. Benchmarks pro�le hardware

I Online phase (application run time)

1. Accept sparse matrix in standard format
2. User can give tuning hints
3. Library pro�les kernels calls to gauge workload
4. Tune only by explicit user request
5. User can save tuning strategy, reuse later



Why explicit tuning?

I Tuning expensive
I Involves copying matrix into new data structure
I The data structure is the tuning
I 5�40 SpMVs

I OSKI will NOT tune unless it thinks it pays
I Users can give workload hints
I �Will call SpMV 500 ×�
I OSKI counts # kernel calls to guess workload



Three proposed features



Three proposed features

I Many features coming; these three �rst

I Two proposed by Mike Heroux:
I Adding nonzeros
I Graph-only tuning

I One benchmarked and ready to integrate:
I Shared-memory parallel SpMV

I Give us interface feedback!



Feature 1: Adding nonzeros to an existing matrix

I Many applications
I Unstructured mesh changes
I Dynamic graph algorithms

I Not e�ciently supported by many sparse data structures
I May require full copy for one nonzero

I OSKI does not currently support adding nonzeros

I We're exploring ways to change the interface that
I Minimize costs (memory and time)
I Are more natural to users



Adding nonzeros = adding sparse matrices

I Adding nonzeros same as adding sparse matrices
I Old nonzeros: matrix A1

I New nonzero(s): matrix A2

I Merge operation:
I (A1,A2) 7→ A where A = A1 + A2

I Result A: standard sparse matrix data structure
I Tuning of A1, A2 lost



Two possible interfaces for adding nonzeros

I Merge only model
I Adding a nonzero requires merge
I Merge may lose tuning info

I Sum of matrices model
I Treat matrix as (implicit) sum of k matrices
I SpMV: Ax = A1x + A2x + · · ·+ Akx
I Each Aj retains its tuning
I Option to merge

I Only per user request for now
I Automatic tuning decision later



Advantages and disadvantages of Models 1 and 2

I Merge only model
I Less work for us
I Narrower API (OSKI is in C)
I Slower if frequent, small structure changes

I Sum of matrices model
I Implementation vehicle for many optimizations
I Naturally supports element assembly (FEM)
I More work (may be overkill) & wider API
I Hinders ATAx and Akx (2k cross terms)



Why split into sum and tune separately?

I Example: UBCSR (Rich Vuduc 2003 PhD thesis)

I Sum of register-blocked matrices
I Di�erent register block dimensions for each term
I Speedup: 2.1× (Itanium 2)
I Almost always saves memory (> 50%)

I Linear programming and other optimization problems
I Dense rows / columns common
I Typical preprocessing step:

1. Extract dense structures

2. Express matrix as sparse matrix plus outer product



Feature 2: Graph-only tuning

I Tuning a matrix using only its graph structure
I No need to store nonzeros sometimes (e.g., Laplacian graph)
I Multiple matrices with same structure but di�erent nonzeros
I Avoid copying nonzeros (not needed for tuning)

I Partly supported by OSKI already
I Can save and restore tuning transformations
I Tune on a matrix with �dummy� nonzero values
I Recycle tuning for matrices with same structure

I Mainly software engineering
I OSKI only tunes using matrix structure anyway
I But we haven't explored no-explicit-nonzeros case



Feature 3: shared-memory parallel backend

I SpMV only, benchmark-quality prototype

I Ankit Jain, UC Berkeley CS Master's Thesis, 2008

I Excellent speedups over optimized serial:
I 9x on AMD Santa Rosa (2 socket × 2 core)
I 11.3x on AMD Barcelona (2 socket × 4 core)
I 7.2x on Intel Clovertown (2 socket × 4 core)

I More speedup than # cores, due to
I Search over 2-D block layouts
I NUMA optimizations



Shared-memory parallel interface

I Ankit made new interface for parallel version

I Looks sequential to users
I Pool of �xed # of Pthreads underneath

I Question: is that the interface you want?

I Sequential front-end, parallel back-end? or
I Single Program Multiple Data (SMPD) � MPI-style?

I Pthreads, OpenMP, TBB, . . . ?



Problem: nested parallel library calls

I What if user library makes parallel calls to OSKI?

I Special case of nested parallelism (�parallel calls parallel�)

I Nested parallelism example: sparse QR

I Cilk or Intel TBB for parallelism in elimination tree
I Each thread may then call (multithreaded) BLAS

I At best: libraries �ght for cores

I Each library expects to own all cores
I Some libraries demand exclusive ownership

I At worst: horrible bugs



Nested parallelism is ongoing research

I UC Berkeley ParLab project: Lithe

I Leave user code alone, change system libraries

I Any sequential-looking interface can be parallel inside
I Use OpenMP, TBB, Pthreads, . . . as before. . .
I . . . but each of these needs new Lithe-based scheduler.

I Proof of concept: sparse QR calling BLAS

I Invasive to system libraries, work in progress



Questions on shared-memory parallel version

I Users want parallel now, before Lithe

I We will likely support some non-Lithe parallel version

I Questions:

I Will you call OSKI in a parallel context?
I Do your systems support Pthreads, OpenMP, . . . ?
I Will you want to restrict # cores used by OSKI?

I Our NUMA optimizations target Linux � other platforms?



Higher-level languages (HLLs) in OSKI



Higher-level languages (HLLs) in OSKI

I Why we want HLLs inside OSKI

I Why users might want HLL interfaces

I Audience feedback



Why OSKI developers want HLLs inside OSKI

I Already there!

I Embedded domain-speci�c language
I Algebra for matrix data structure transformations
I Not meant for users (yet)

I Tuning decisions vs. tuned kernels

I Tuning decision code not performance-critical. . .
I . . . yet often source of most bugs and development time.
I It's why prototyped kernels take so long to deploy in OSKI!
I HLL dramatically increases (our) productivity

I HLLs as development accelerators

I Implement new features �rst in HLL (calling into C)

I If performance demands it, push new features into C



Why users might want HLL interface to OSKI

I Interfaces in lower-level languages mix productivity and
e�ciency code

I �Productivity code�: computation users want to do
I �E�ciency code�: tuning and implementation choices for

performance
I Mixing constrains tuning and kills user productivity

I HLLs natural �t for interface of tuned libraries

I Separate tuning policy from computation

I OSKI free to experiment with complex optimizations. . .
I . . . �in parallel� while users experiment with computation.



PySKI: Python Sparse Kernel Interface

I Use Python because of SciPy

I Popular Matlab-like Python environment
I scipy.sparse: Sparse matrix wrapper

I Modify scipy.sparse to call OSKI methods

I Tuned OSKI data structures live as before in C world

I Python code only deals with pointers
I Minimizes memory and copy overhead
I Preserves tuning

I Experimental vehicle for HLL interfaces



Audience questions on HLLs

I Does HLL inside OSKI scare you?

I Even if users never see it?

I Will OSKI users (= Trilinos developers?) want HLL interface?

I How portable must the HLL be? (OS, compiler, hardware)

I Some HLLs only need a C compiler, but fewer features
I Python heavier-weight, but has libraries we want



Proposed feature: Matrix powers kernel



Proposed feature: Matrix powers kernel

I (A, x) 7→ (Ax ,A2
x , . . . ,As

x) (or similar)

I Can compute for same communication cost as one SpMV

I See Demmel et al.\ 2007, 2008, 2009 (SC09)

I Includes multicore optimizations (SC09)

I Applications

I Chebyshev iteration
I Lookahead for nonsymmetric Lanczos / BiCG

I s-step iterative methods



s-step iterative methods

I Reorganization of existing Krylov subspace methods

I Compute s Krylov subspace basis vectors

I All at once, using matrix powers kernel

I Use BLAS 3 to orthogonalize them

I Tall Skinny QR (TSQR): stable and optimal communication

I CG, GMRES, (symmetric) Lanczos, Arnoldi

I Details in SC09, and my thesis (almost done!)



Kernel co-tuning

I Our SC09 GMRES has three kernels

I Matrix powers
I Tall Skinny QR
I Block Gram-Schmidt

I Tuning for one a�ects others

I Data layout essential to performance
I Copy in/out btw formats too slow

I Workload fraction per kernel depends on runtime params

I Restart length
I Sparse matrix structure

I Must tune entire app / composition of kernels



Challenges



Challenges (1 of 2)

I Composing multiple optimizations

I Some optimizations change sparsity structure

I Register blocking adds nonzeros

I Changes optimizations that partition the matrix

I Cache blocking, matrix powers, reordering for locality, . . .

I If noncommutative, which order? not all orders make sense

I Co-tuning (Composing multiple kernels)

I Multiple kernels share data layout, but. . .
I . . . data layout part of tuning!
I What interface should kernels export for co-tuning?



Challenges (2 of 2)

I Correctness

I Performance depends on many autogenerated code variants
I Some matrix data structures have tricky corner cases
I Current correctness proofs e�ort at UC Berkeley

I Search: Combinatorial explosion

I Heterogeneous and rapidly evolving hardware

I Multiple levels of memory hierarchy

I NUMA: Nonuniform memory latencies and bandwidths

I Compute accelerators like GPUs

I More and more optimizations and parameters
I Runtime benchmarking expensive
I Need smarter search

I Performance bounds as stopping criterion

I More information out of fewer samples



Conclusions

I OSKI: optimized �sparse matrix BLAS�

I New features and optimizations in progress

I Interesting research and software development challenges

I We want user feedback!



Extra slides



Why no distributed-memory OSKI?

I Dist-mem search too expensive

I Single-node already takes hours
I Build-time search must discover hardware
I Network topology runtime-dependent

I Number of procs
I Job scheduling

I Must also discover matrix structure at runtime

I Memory bandwidth matters

I Clearly dominates single-node performance
I vs.\ message latency � not always

I Multicore / GPU: more procs, less bw

I Intended use: inside dist-mem library

I Already wrapped inside PETSc


	Brief introduction to OSKI
	Three proposed features
	Higher-level languages
	Matrix powers kernel
	Challenges

