Mesquite = Mesh Quality Improvement Toolkit ﬁ

A C++ software library to improve mesh quality by vertex-movement.

Purpose is to support

1. a priori mesh generation,

2. accuracy & efficiency of PDE simulations using a posteriori information
to improve the mesh,

3. mesh optimization research.

A SciDAC ITAPS Tool

http://www.cs.sandia.gov/optimization/knupp/Mesquite.html

mesquite@software.sandia.gov
Patrick Knupp, Lori Diachin, Jason Kraftcheck, Brian Miller, Martin Isenburg

(Only general purpose mesh improvement tool of its kind)

SAND2009-7258P

Mesquite Applications

*UIUC Rocket Center Propellant Burn (shape improvement) l H

*SLAC Waveguide cavity shape design optimization (deforming meshes)
*Cubit (a priori mesh improvement)

*SkiRun Project (medical) | N

Teconstructed into a Computational Grid

.;:_Fq iy = ?}&
*PNNL NWGrid (improvement of biological meshes) %‘)’% ~~~~~

*Alegra and ALE3D (Invertibility guarantee for ALE rezone) | x = E

*‘NASA-Langley (sliver removal for viscous CFD mesh)

*Kull (research improved ALE rezone algorithms)

*PPL Fusion (mesh alignment and improvement)

Mesquite Capabilities Apply to Wide Variety of Mesh Types

Optimize the Quality of:

* 2D/3D Meshes composed of Triangles, Quadrilaterals, Tetrahedra,
Hexahedra, Wedges, Pyramids,

* Unstructured, Structured, Hybrid meshes,

* Finite element meshes with high-order nodes

with

* Invertibility Guarantees, and
* Mesh untangling.

Technical Approach

Optimization-based vertex-movement

Find a local minimum of F(xl,---, XN)Z%Z(Ck,Uk)p
k

Local quality at a mesh sample point (or element) given by p.

Target-matrix Paradigm (state-of-the-art):

Optimal mesh defined by target-matrices representing ideal Jacobian matrix at each
sample point. Only uses 3 basic quality metrics. Targets are automatically constructed
using a priori data available to the application.

* Permits rapid deployment of custom-made optimizers.

Mesquite also has relaxation-smoothers (e.g. Laplace, constrained Laplace).

Notes

Input:
1. An initial mesh to be improved (vertices, connectivity, vertex constraints),
2. Termination tolerances and (rarely) a few tunable parameters,

3. Optional application data (scalar, vector, tensor fields).

Mesquite never halts execution if there is an error it can’t deal with... returns
control back to app.

Doubles as both an application service and a research platform
(so need to balance flexibility vs. efficiency)

Mesquite is limited to node-movement, but compliments other interoperable
ITAPS tools: (e.g., swap, refine, geometry, visualization)

Mesquite Application Components

Mesquite
Driver

- = Mesquite Code

- = External Code

or

Mesh Query
Interfaces

Mesquite API
Multi-level:

* low-level for custom-built smoothers (developer oriented),
* high-level for canned algorithms, instructions, and wrappers (user-oriented)

Current Mesquite Wrappers:

1. (smart) Laplacian Smoothing
2. Shape Improvement
3. Min-Edge Length Improvement
4. Shape Improvement for Size-adapted mesh
5. Sliver removal for CFD viscous boundary
layer tet meshes

6. Synchronous Parallel Shape Improvement Wrapper
int main(int argc, char* argv[]) {

MsqError err;

Mesquite:: Meshlmpl my_mesh;

my_mesh.read_vtk(argv[1], err);

Mesquite::ShapelmprovementWrapper mesh_quality_algorithm(err);
mesh_quality_algorithm.run_instructions(&my_mesh, err);

return O;

Minimum Edge-Length Improvement Wrapper

before after

Size-adapted Mesh Shape Improvement Wrapper

Optimizing the Quality of a tetrahedral viscous CFD mesh

Test Mesh: Total elements 537975, Total nodes 97144.
Total viscous nodes 86610.

#elements vs. min & max dihedral angle

Count

10000
5094.84
3593.81
2154.43
[sotropic 1291.55
774.264
454,159
278.256
166.81

90

100
595484
3585331
21.5443
12,9155
7.74264
4.6415%
2.78256
16631

N
L

chgc'

Minimum tetrahedral angle

R *
Viscous ! Sliver

Q590 135 180

Maximum tetrahedral angle

Results

Number of Sliver Elements Considerably Reduced
Viscous & Transition Regions seem Unaffected

a0

"initial o+
final =

0k

B0 |

50 F

40 F

EL

10 F

0

=] a0 100 120 140 160 180
167,483, 47,6110

Size Transition is Preserved

"Baseline -

Lihedral metrig,

Bell mouth
inlet wall

Y -symmetry

plane Outflow face

Synchronous Parallel Shape Improvement Wrapper

Algorithm from Freitag, Jones & Plassman (1999)
Weak scalability tests up to 128 processors successful
Parallel result same as serial
Works for most linear element types
Requirements

— one layer of ghost nodes

— two tags for all nodes: global ID + processor ID

— MPI

Using Parallel Mesquite (with ITAPS)

MPI_Init(&argec, &argv); |
MPI_Init(&argc, &argv);

/7 lo;

iMeshP_createPartitionAll(mesh, MPI_COMM_WORLD, &partition, &err);

iMeshP_loadAl I(mesh, partition, root_set, iname, O, &err, strien(iname), 0);

wetl 77 1o0ad the ITAPS mesh

// create ghost entities

iMeshP_createGhostEntsAll (mesh, partition, 3, 1, 1, 0, &err);
msqiMeshP = Mesquite: -MsqiMeshP:-create(mesh, root_set, MPI_COMM_WORLD,
iBase REGION, merr, fixed tag name);

se_global_patch();

termInner = new Mesquite::TerminationCriterionQ;

termInner->add_criterion_type_with_double(Mesquite: :TerminationCriterion: :GRADIENT_L2_NORM_ABSOLUTE, 1e-3,merr);
terminner->add_criterion_type_with_int(Mesquite::TerminationCriterion: :NUMBER_OF ITERATES,5,merr);

termOuter = new Mesquite::TerminationCriterionQ;

termOu

== // run the iInstruction gueue

alg.se
L L 2l [} A Lo v V- I

// cleanup

delete msqiMeshP;
iMeshP_destroyPartitionAll(mesh, partition, &err); | &err, strien(oname), 0);
iMesh_dtor(mesh, &err);

e

Low-Level API

Access C++ Objects for custom-built mesh optimization:

* Qualtiy Metric
- Element, Vertex, or Sample point
- Composite (add, subtract, scale)
- Analytic gradients and Hessians, Numerical

* Obijective Function
- L2, L-infinity, Power-mean templates
- Composite (add, subtract, scale)

* Qualitylmprover
- Feasible Newton, Quasi-Newton, Trust Region (Hessian-based),
Conjugate Gradient, and Steepest Descent
- Global, Block Coordinate Descent, and Nash options,

* Termination Criterion
- Seven absolute and seven relative criteria,
- can be compounded (OR, AND)

* Instruction Queue for sequential and multi-stage optimization procedures

* QualityAssessor for evaluating “before” & “after” quality

*TargetCalculator for creating targets in Target-matrix paradigm

Mesquite Application Components

Mesquite
Driver

- = Mesquite Code

- = External Code

or

Mesh Query
Interfaces

Mesquite::Mesh Interface and the ITAPS iMesh Interface

Internal C++ mesh APl on top of ITAPS iMesh
- Mesquite specific (more efficient)

- Fewer functions to implement

- Less general

- Stable

ArrayMesh class to help interface with Fortran code
VTK 3.0 mesh file reader/writer (with stand-alone Exodus to VTK converters)

Tag Data to access data stored with application (scalars, vectors, matrices)

ITAPS iMesh mesh interface
-Permits interoperability with other ITAPS tools via standard
-Can implement in C or Fortran

Geometry and Constraints:

- Mesquite has no general internal geometry engine,

- PlanarDomain, SphereDomain, CylinderDomain

- Has call-back functions “get_normal” and “move_to_owner” to constrain vertex movement to geometry
- No constrained or parametric optimization

- Fixed, Free, Slave flags

General Information

*Version 2.1 released October 5, 2009.
* Available from

- MSQ web-page,

- ITAPS code repository (RPI),

- Trilinos (beta repository),
- Cubit (only some capabilities exposed).

* Open source with LGPL license (downloaded 775 times over last 5 years)
» Compiles under GNU automake/libtool or cmake build systems

* Trilinos cmake/ctest

» Platforms: MSWindows, Unix

* Can compile as shared library

* No other libraries needed to build

* Extensive test suite (end-to-end and unit) w/nightly regression

* Users Guide (needs work)

Future Work

New Mesquite Wrappers (via Target-matrix Paradigm):

STV NoOaRON =

0.
1.

Skew Improvement

Updating Meshes on Deforming Domains
Shape Improvement with Size-Equidistribution
Anisotropic mesh smoothing
Heterogeneously-sized mesh smoothing
Geometric adaptivity

R-adaptivity to discretization error

Mesh alignment

Boundary mesh controller (skew, spacing)
Smoothing of Transition Layers
High-order node Smoothing

Additional Capabilities:

NN~

Smooth meshes with hanging nodes
Smooth dual mesh (Voronoi elements)
Node re-ordering for Efficiency
Relaxation solvers

ActiveSetSolver (restored)

Vertex Culling Methods

Mesh Untanglers

