
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

What’s New in Isorropia?

Erik Boman

Cedric Chevalier, Lee Ann Riesen

Sandia National Laboratories, NM, USA

Trilinos User’s Group, Nov 4-5, 2009.

SAND 2009-7611P.

Isorropia Overview
Isorropia
• is a package for
combinatorial
scientific computing:

– Partitioning, load-
balancing

– Matrix/graph coloring
– Matrix/graph ordering

• provides Epetra-
based interface to
Zoltan.

2

Zoltan

Isorropia

Trilinos
application

3

Comparison Chart

Build system CMake and
Automake

CMake

Language C (also C++ and
F90 interfaces)

C++

Interface Callback functions
(user must provide)

Epetra data types

Package
dependencies

None Zoltan, Epetra,
Teuchos

Features Partitioning,
Coloring,
Ordering,
Dist. data directory,
Unstr. Comm. Lib.

Partitioning,
Coloring,
Ordering,

Data redistribution

Zoltan Isorropia

4

What’s New?
• Parameters

– Expanded set of Isorropia parameters
– Zoltan parameters are now optional (expert users)

• Automatic symmetrization
– A+A’ is formed when algorithm requires sym. graph

• Partitioning
– Geometric partitioning of points

• Epetra_Multivector interface
• Algorithms: RCB, RIB, HSFC (in Zoltan)

• Coloring
– Support for Jacobian coloring

Coloring
• Isorropia supports graph/matrix coloring via the
Colorer class

• Several variations of coloring (d1, d2)
• Scalable, parallel algorithm

– Bozdag, Gebremedhin, Catalyurek, Manne, Boman,
JPDC 2008.

• Default in Isorropia is to color matrix columns
– Intended for sparse Jacobians

5

Coloring and Jacobians

Original Jacobian Compressed rrepresentationn
(Structurally orthogonal

columns packed together)

D1 coloring
formulation on

column inter. graph

D2 coloring
bipartite graph

Presenter
Presentation Notes
Coleman and More, col. Intersection graph
D1 coloring
Bipartite graph natural model for Jacobian

POP

• POP is a parallel ocean simulator for climate
• SNL is working with LANL to use Trilinos in POP
• Solver uses JFNK

– No explicit Jacobian
– Forming Jacobian by finite differences is expensive

7

Coloring in POP (1)
Work led by Chris Siefert.
• Want to precondition Jacobian
• Need to explicitly form preconditioner
• Use coloring on graph of ~Jacobian

– Approximation may be sufficient
• Form compressed ~Jacobian by finite diff.
• Uncompress ~Jacobian and precondition

8

Coloring in POP (2)
Example:
• 40x42x34 mesh -> 290K unknowns
• Isorropia parallel coloring gives 432 colors

• # finite differences reduced from 290K (naïve) to 432!
• Jacobian build takes 30-50% of total time

• Jac_build: 1377 s
• Solve: 2618 s
• Total: 4281 s

• Any reduction in #colors reduces total time
• Work in progress: Use bipartite graph in Isorropia to

reduce colors.

9

10

Ordering

• Ordering for sparse matrices can help:
– Reduce fill in direct factorization (Amesos)
– Improve convergence in iterative methods (IFPACK)
– Improve memory/cache performance in sparse kernels

(Epetra, Tpetra)

• So far focus on global (parallel) ordering for fill
– Rely on TPL: ParMetis or Scotch
– In progress: Native Zoltan ordering

• HUND for unsymmetric problems

Sparse LU
• A = LU → Solve Ly=b, Ux=y
• Permute to keep L, U sparse

• Fill-reducing ordering
• Need (partial) pivoting for numerical stability:

• PA = LU
• P is a row permutation from pivoting

• Can reorder columns to reduce fill
• PAQ = LU

• We choose Q but P is not known a priori

Hypergraph Unsymmetric Nested
Dissection (HUND)

• Permute columns
– Also permute rows but

allow row pivoting
• Use hypergraph SBBD
ordering recursively

– Grigori, Boman,
Donfack, Davis ('08)

– Analogous to nested
dissection for symmetric
problems

– Fill is limited to nonzero
blocks for any pivoting

– Useful both in serial and
in parallel

HUND in Zoltan
• Design for handling matrices for parallel solvers

– Minimum Degree heuristics do not provide enough
parallelism (and cannot really be parallelized)

– Block form is computed with Zoltan’s parallel
hypergraph partitioner

• To improve quality inside the blocks, local
heuristics may be applied (COLAMD, etc.)

– Work in progress

Preliminary Results
• Using HUND with only the computation of the

structure:
– worst case but give a upper bound of the factorization cost

• Evaluation of the quality using SuperLU dist on 64
processors on Franklin XT4 at Nersc.

• Comparisons against current aproachs (A+At)
– Nested Dissection codes: ParMetis and Scotch
– Minimum Degree

• Test Cases from Florida Collection:
– Sinc18: crack simulation
– ASIC_680ks: circuit simulation (from Xyce)

Sinc18
HUND ParMetis MMD

L+U 53.1e+6 38.7e+6 30.3e+6
Factorization
flops

84.3e+9 225e+9 51.6e+9

Factorization
Time (s)

65 30.82 1.82

• No ordering inside the blocks can
explain the timings for HUND

• Matrix structure seems
appropriate for dissection
approach on the highest levels

Xyce: ASIC_680ks
HUND Scotch ParMetis MMD

L+U 37.2e+6 83.8e+6 12.3e+6 3.6e+6
Factorization
flops

34.6e+9 362e+9 3.04e+9 1.5e+9

Factorization
Time (s)

34.49 88.19 36.90 25.82

• MMD does not provide
enough parallelism

• Here, HUND is the fastest
ordering to compute

Ordering Plans
• Davis’ SuiteSparse as TPL in Zoltan

– Access to AMD, COLAMD, etc.
– Use in HUND

• How to use orderings in Amesos?
– A) Isorropia computes permutation, Amesos passes

vector to solver (if supported by TPL)
– B) Isorropia computes permutation, Amesos permutes

matrix (copy?) before calling solver

• Local (serial) orderings in Zoltan
– RCM and space-filling curves
– Michael Wolf (for climate project)

18

The End

	What’s New in Isorropia?
	Isorropia Overview
	Comparison Chart
	What’s New?
	Coloring
	Coloring and Jacobians
	POP
	Coloring in POP (1)
	Coloring in POP (2)
	Ordering
	Sparse LU
	Hypergraph Unsymmetric Nested Dissection (HUND)
	HUND in Zoltan
	Preliminary Results
	Sinc18
	Xyce: ASIC_680ks
	Ordering Plans
	The End

